We give an AM protocol that allows the verifier to sample elements x from a
probability distribution P, which is held by the prover. If the prover is
honest, the verifier outputs (x, P(x)) with probability close to P(x). In case
the prover is dishonest, one may hope for the following guarantee: if the
verifier outputs (x, p), then the probability that the verifier outputs x is
close to p. Simple examples show that this cannot be achieved. Instead, we show
that the following weaker condition holds (in a well defined sense) on average:
If (x, p) is output, then p is an upper bound on the probability that x is
output. Our protocol yields a new transformation to turn interactive proofs
where the verifier uses private random coins into proofs with public coins. The
verifier has better running time compared to the well-known Goldwasser-Sipser
transformation (STOC, 1986). For constant-round protocols, we only lose an
arbitrarily small constant in soundness and completeness, while our public-coin
verifier calls the private-coin verifier only once