9,415 research outputs found

    Comparative evaluation of twenty pilot workload assessment measure using a psychomotor task in a moving base aircraft simulator

    Get PDF
    A comparison of the sensitivity and intrusion of twenty pilot workload assessment techniques was conducted using a psychomotor loading task in a three degree of freedom moving base aircraft simulator. The twenty techniques included opinion measures, spare mental capacity measures, physiological measures, eye behavior measures, and primary task performance measures. The primary task was an instrument landing system (ILS) approach and landing. All measures were recorded between the outer marker and the middle marker on the approach. Three levels (low, medium, and high) of psychomotor load were obtained by the combined manipulation of windgust disturbance level and simulated aircraft pitch stability. Six instrument rated pilots participated in four seasons lasting approximately three hours each

    Study of the spectral properties of ELM precursors by means of wavelets

    Get PDF
    The high confinement regime (H-mode) in tokamaks is accompanied by the occurrence of bursts of MHD activity at the plasma edge, so-called edge localized modes (ELMs), lasting less than 1 ms. These modes are often preceded by coherent oscillations in the magnetic field, the ELM precursors, whose mode numbers along the toroidal and the poloidal directions can be measured from the phase shift between Mirnov pickup coils. When the ELM precursors have a lifetime shorter than a few milliseconds, their toroidal mode number and their nonlinear evolution before the ELM crash cannot be studied reliably with standard techniques based on Fourier analysis, since averaging in time is implicit in the computation of the Fourier coefficients. This work demonstrates significant advantages in studying spectral features of the short-lived ELM precursors by using Morlet wavelets. It is shown that the wavelet analysis is suitable for the identification of the toroidal mode numbers of ELM precursors with the shortest lifetime, as well as for studying their nonlinear evolution with a time resolution comparable to the acquisition rate of the Mirnov coils

    Large-mode-number magnetohydrodynamic instability driven by sheared flows in a tokamak plasma with reversed central shear

    Full text link
    The effect of a narrow sub-Alfvenic shear flow layer near the minimum q_min of the tokamak safety factor profile in a configuration with reversed central shear is analyzed. Sufficiently strong velocity shear gives rise to a broad spectrum of fast growing Kelvin-Helmholtz (KH)-like ideal magnetohydrodynamic (MHD) modes with dominant mode numbers m,n ~ 10. Nonlinear simulations with finite resistivity show magnetic reconnection near ripples caused by KH-like vortices, the formation of turbulent structures, and a flattening of the flow profile. The KH modes are compared to double tearing modes (DTM) which dominate at lower shearing rates. The possible application of these results in tokamaks with internal transport barrier is discussed.Comment: 4 pages, 4 figure

    The role of phospholipid as a solubility- and permeability-enhancing excipient for the improved delivery of the bioactive phytoconstituents of Bacopa monnieri

    Get PDF
    In an attempt to improve the solubility and permeability of Standardized Bacopa Extract (SBE), a complexation approach based on phospholipid was employed. A solvent evaporation method was used to prepare the SBE-phospholipid complex (Bacopa Naturosome, BN). The formulation and process variables were optimized using a central-composite design. The formation of BN was confirmed by photomicroscopy, Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Powder X-ray Diffraction (PXRD). The saturation solubility, the in-vitro dissolution, and the ex-vivo permeability studies were used for the functional evaluation of the prepared complex. BN exhibited a significantly higher aqueous solubility compared to the pure SBE (20-fold), or the physical mixture of SBE and the phospholipid (13-fold). Similarly, the in-vitro dissolution revealed a significantly higher efficiency of the prepared complex (BN) in releasing the SBE (\u3e 97%) in comparison to the pure SCE (~ 42%), or the physical mixture (~ 47%). The ex-vivo permeation studies showed that the prepared BN significantly improved the permeation of SBE (\u3e 90%), compared to the pure SBE (~ 21%), or the physical mixture (~ 24%). Drug-phospholipid complexation may thus be a promising strategy for solubility enhancement of bioactive phytoconstituents

    Improving Navy recruiting with data farming

    Get PDF
    Proceedings of the 2016 Winter Simulation Conference T. M. K. Roeder, P. I. Frazier, R. Szechtman, E. Zhou, T. Huschka, and S. E. Chick, eds.Secretary of the Navy Ray Mabus states that people provide “the Navy and Marine Corps’ greatest edge” (Mabus, 2015). To help recruit and manage this dynamic workforce of more than 300,000 active duty Sailors, the Navy uses mathematical models and simulation to assess the potential impacts and risks of changes to force structure, budgets, policies, and the economy. One important model is the Planned Re-source Optimization (PRO) model. PRO is currently being used to inform recruiting resourcing decisions. The decisions may involve, for example, advertising, enlistment bonuses, number of production recruiters, etc. A limitation of PRO is the lack of an interface to facilitate extensive experimentation. This paper summarizes an effort underway to enhance the analytic utility of the PRO model by embedding it in a data farming environment. This enhanced tool is called the “Planned Resource Optimization Model with Ex-perimental Design” (PROM-WED)

    Jost Function for Singular Potentials

    Get PDF
    An exact method for direct calculation of the Jost function and Jost solutions for a repulsive singular potential is presented. Within this method the Schrodinger equation is replaced by an equivalent system of linear first-order differential equations, which after complex rotation, can easily be solved numerically. The Jost function can be obtained to any desired accuracy for all complex momenta of physical interest, including the spectral points corresponding to bound and resonant states. The method can also be used in the complex angular-momentum plane to calculate the Regge trajectories. The effectiveness of the method is demonstrated using the Lennard-Jones (12,6) potential. The spectral properties of the realistic inter-atomic He4-He4 potentials HFDHE2 and HFD-B of Aziz and collaborators are also investigated.Comment: 12 pages, latex, 2 eps-figures, submitted to Phys.Rev.
    • …
    corecore