69,662 research outputs found

    Geodynamics Branch research report, 1982

    Get PDF
    The research program of the Geodynamics Branch is summarized. The research activities cover a broad spectrum of geoscience disciplines including space geodesy, geopotential field modeling, tectonophysics, and dynamic oceanography. The NASA programs which are supported by the work described include the Geodynamics and Ocean Programs, the Crustal Dynamics Project, the proposed Ocean Topography Experiment (TOPEX) and Geopotential Research Mission. The individual papers are grouped into chapters on Crustal Movements, Global Earth Dynamics, Gravity Field Model Development, Sea Surface Topography, and Advanced Studies

    An Improved Procedure for Laboratory Rearing of the Corn Earworm, \u3ci\u3eHeliothis Zea\u3c/i\u3e (Lepidoptera: Noctuidae)

    Get PDF
    An improved method for the laboratory rearing of the corn earworm. Heliothis zea, described. The rearing medium is a modification of the commonly used wheat germ An oviposition chamber, a feeder for adults, and a simple and inexpensive contrnlled humidity chamber are described

    Automatic Classification of Text Databases through Query Probing

    Get PDF
    Many text databases on the web are "hidden" behind search interfaces, and their documents are only accessible through querying. Search engines typically ignore the contents of such search-only databases. Recently, Yahoo-like directories have started to manually organize these databases into categories that users can browse to find these valuable resources. We propose a novel strategy to automate the classification of search-only text databases. Our technique starts by training a rule-based document classifier, and then uses the classifier's rules to generate probing queries. The queries are sent to the text databases, which are then classified based on the number of matches that they produce for each query. We report some initial exploratory experiments that show that our approach is promising to automatically characterize the contents of text databases accessible on the web.Comment: 7 pages, 1 figur

    Self-consistent-field calculations of proteinlike incorporations in polyelectrolyte complex micelles

    Get PDF
    Self-consistent field theory is applied to model the structure and stability of polyelectrolyte complex micelles with incorporated protein (molten globule) molecules in the core. The electrostatic interactions that drive the micelle formation are mimicked by nearest-neighbor interactions using Flory-Huggins X parameters. The strong qualitative comparison with experimental data proves that the Flory-Huggins approach is reasonable. The free energy of insertion of a proteinlike molecule into the micelle is nonmonotonic: there is (i) a small repulsion when the protein is inside the corona; the height of the insertion barrier is determined by the local osmotic pressure and the elastic deformation of the core, (ii) a local minimum occurs when the protein molecule is at the core-corona interface; the depth (a few kBT's) is related to the interfacial tension at the core-corona interface and (iii) a steep repulsion (several kBT) when part of the protein molecule is dragged into the core. Hence, the protein molecules reside preferentially at the core-corona interface and the absorption as well as the release of the protein molecules has annealed rather than quenched characteristics. Upon an increase of the ionic strength it is possible to reach a critical micellization ionic (CMI) strength. With increasing ionic strength the aggregation numbers decrease strongly and only few proteins remain associated with the micelles near the CM

    Research program of the Geodynamics Branch

    Get PDF
    This report is the Fourth Annual Summary of the Research Program of the Geodynamics Branch. The branch is located within the Laboratory for Terrestrial Physics of the Space and Earth Sciences Directorate of the Goddard Space Flight Center. The research activities of the branch staff cover a broad spectrum of geoscience disciplines including: tectonophysics, space geodesy, geopotential field modeling, and dynamic oceanography. The NASA programs which are supported by the work described in this document include the Geodynamics and Ocean Programs, the Crustal Dynamics Project and the proposed Ocean Topography Experiment (TOPEX). The reports highlight the investigations conducted by the Geodynamics Branch staff during calendar year 1985. The individual papers are grouped into chapters on Crustal Movements and Solid Earth Dynamics, Gravity Field Modeling and Sensing Techniques, and Sea Surface Topography. Further information on the activities of the branch or the particular research efforts described herein can be obtained through the branch office or from individual staff members

    The impact of an emotionally expressive writing intervention on eating pathology in female students

    Get PDF
    © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.Introduction: Previous research demonstrating emotional influences on eating and weight suggest that emotionally expressive writing may have a significant impact on reducing risk of eating pathology. This study examined the effects of writing about Intensely Positive Experiences on weight and disordered eating during a naturalistic stressor. Method: Seventy-one female students completed an expressive or a control writing task before a period of exams. Both groups were compared on BMI (kg/m2) and the Eating Disorder Examination – Questionnaire (EDE-Q) before the writing task and at 8-week follow-up. A number of secondary analyses were also examined (to identify potential mediators) including measures of attachment, social rank, self-criticism and self-reassurance, stress and mood. Results: There was a significant effect of intervention on changes in the subscales of the EDE-Q (p = .03). Specifically, expressive writers significantly reduced their dietary restraint while those in the control group did not. There was no significant effect of the intervention on changes in BMI or the other subscales of the EDE-Q (Eating, Weight and Shape Concern). There was also no effect of writing on any of the potential mediators in the secondary analyses. Discussion: Emotionally expressive writing may reduce the risk of dietary restraint in women but these findings should be accepted with caution. It is a simple and light touch intervention that has the potential to be widely applied. However, it remains for future research to replicate these results and to identify the mechanisms of action.Peer reviewedFinal Published versio

    Coherent pumping of a Mott insulator: Fermi golden rule versus Rabi oscillations

    Full text link
    Cold atoms provide a unique arena to study many-body systems far from equilibrium. Furthermore, novel phases in cold atom systems are conveniently investigated by dynamical probes pushing the system out of equilibrium. Here, we discuss the pumping of doubly-occupied sites in a fermionic Mott insulator by a periodic modulation of the hopping amplitude. We show that deep in the insulating phase the many-body system can be mapped onto an effective two-level system which performs coherent Rabi oscillations due to the driving. Coupling the two-level system to the remaining degrees of freedom renders the Rabi oscillations damped. We compare this scheme to an alternative description where the particles are incoherently pumped into a broad continuum.Comment: 4 pages, 3 figure

    Three results on representations of Mackey Lie algebras

    Full text link
    I. Penkov and V. Serganova have recently introduced, for any non-degenerate pairing W⊗V→CW\otimes V\to\mathbb C of vector spaces, the Lie algebra glM=glM(V,W)\mathfrak{gl}^M=\mathfrak{gl}^M(V,W) consisting of endomorphisms of VV whose duals preserve W⊆V∗W\subseteq V^*. In their work, the category TglM\mathbb{T}_{\mathfrak{gl}^M} of glM\mathfrak{gl}^M-modules which are finite length subquotients of the tensor algebra T(W⊗V)T(W\otimes V) is singled out and studied. In this note we solve three problems posed by these authors concerning the categories TglM\mathbb{T}_{\mathfrak{gl}^M}. Denoting by TV⊗W\mathbb{T}_{V\otimes W} the category with the same objects as TglM\mathbb{T}_{\mathfrak{gl}^M} but regarded as V⊗WV\otimes W-modules, we first show that when WW and VV are paired by dual bases, the functor TglM→TV⊗W\mathbb{T}_{\mathfrak{gl}^M}\to \mathbb{T}_{V\otimes W} taking a module to its largest weight submodule with respect to a sufficiently nice Cartan subalgebra of V⊗WV\otimes W is a tensor equivalence. Secondly, we prove that when WW and VV are countable-dimensional, the objects of TEnd(V)\mathbb{T}_{\mathrm{End}(V)} have finite length as glM\mathfrak{gl}^M-modules. Finally, under the same hypotheses, we compute the socle filtration of a simple object in TEnd(V)\mathbb{T}_{\mathrm{End}(V)} as a glM\mathfrak{gl}^M-module.Comment: 9 page

    Repulsive Fermions in Optical Lattices: Phase separation versus Coexistence of Antiferromagnetism and d-Superfluidity

    Full text link
    We investigate a system of fermions on a two-dimensional optical square lattice in the strongly repulsive coupling regime. In this case, the interactions can be controlled by laser intensity as well as by Feshbach resonance. We compare the energetics of states with resonating valence bond d-wave superfluidity, antiferromagnetic long range order and a homogeneous state with coexistence of superfluidity and antiferromagnetism. We show that the energy density of a hole ehole(x)e_{hole}(x) has a minimum at doping x=xcx=x_c that signals phase separation between the antiferromagnetic and d-wave paired superfluid phases. The energy of the phase-separated ground state is however found to be very close to that of a homogeneous state with coexisting antiferromagnetic and superfluid orders. We explore the dependence of the energy on the interaction strength and on the three-site hopping terms and compare with the nearest neighbor hopping {\it t-J} model

    Proteoglycan neofunctions: regulation of inflammation and autophagy in cancer biology.

    Get PDF
    Inflammation and autophagy have emerged as prominent issues in the context of proteoglycan signaling. In particular, two small, leucine-rich proteoglycans, biglycan and decorin, play pivotal roles in the regulation of these vital cellular pathways and, as such, are intrinsically involved in cancer initiation and progression. In this minireview, we will address novel functions of biglycan and decorin in inflammation and autophagy, and analyze new emerging signaling events triggered by these proteoglycans, which directly or indirectly modulate these processes. We will critically discuss the dual role of proteoglycan-driven inflammation and autophagy in tumor biology, and delineate the potential mechanisms through which soluble extracellular matrix constituents affect the microenvironment associated with inflammatory and neoplastic diseases
    • …
    corecore