106 research outputs found

    The analysis of 2-amino-2-thiazoline-4-carboxylic acid in the plasma of smokers and non-smokers

    Get PDF
    ATCA (2-amino-2-thiazoline-4-carboxylic acid) is a promising marker to assess cyanide exposure because of several advantages of ATCA analysis over direct determination of cyanide and alternative cyanide biomarkers (i.e. stability in biological matrices, consistent recovery, and relatively small endogenous concentrations). Concentrations of ATCA in the plasma of smoking and non-smoking human volunteers were analyzed using gas-chromatography mass-spectrometry to establish the feasibility of using ATCA as a marker for cyanide exposure. The levels of ATCA in plasma of smoking volunteers, 17.2 ng/ml, were found to be significantly (p < 0.001) higher than that of non-smoking volunteers, 11.8 ng/ml. Comparison of ATCA concentrations of smokers relative to non-smokers in both urine and plasma yielded relatively similar results. The concentration ratio of ATCA for smokers versus non-smokers in plasma and urine was compared to similar literature studies of cyanide and thiocyanate, and correlations are discussed. This study supports previous evidence that ATCA can be used to determine past cyanide exposure and indicates that further studies should be pursued to validate the use of ATCA as a marker of cyanide exposure

    CCN2/Connective Tissue Growth Factor Is Essential for Pericyte Adhesion and Endothelial Basement Membrane Formation during Angiogenesis

    Get PDF
    CCN2/Connective Tissue Growth Factor (CTGF) is a matricellular protein that regulates cell adhesion, migration, and survival. CCN2 is best known for its ability to promote fibrosis by mediating the ability of transforming growth factor Ξ² (TGFΞ²) to induce excess extracellular matrix production. In addition to its role in pathological processes, CCN2 is required for chondrogenesis. CCN2 is also highly expressed during development in endothelial cells, suggesting a role in angiogenesis. The potential role of CCN2 in angiogenesis is unclear, however, as both pro- and anti-angiogenic effects have been reported. Here, through analysis of Ccn2-deficient mice, we show that CCN2 is required for stable association and retention of pericytes by endothelial cells. PDGF signaling and the establishment of the endothelial basement membrane are required for pericytes recruitment and retention. CCN2 induced PDGF-B expression in endothelial cells, and potentiated PDGF-B-mediated Akt signaling in mural (vascular smooth muscle/pericyte) cells. In addition, CCN2 induced the production of endothelial basement membrane components in vitro, and was required for their expression in vivo. Overall, these results highlight CCN2 as an essential mediator of vascular remodeling by regulating endothelial-pericyte interactions. Although most studies of CCN2 function have focused on effects of CCN2 overexpression on the interstitial extracellular matrix, the results presented here show that CCN2 is required for the normal production of vascular basement membranes

    Expression of CCN family of genes in human skin in vivo and alterations by solar-simulated ultraviolet irradiation

    Get PDF
    The CCN family of proteins is involved in diverse biological functions such as cell growth, adhesion, migration, angiogenesis, and regulation of extracellular matrix. We have investigated expression of CCN family genes and alternations induced by solar-simulated ultraviolet irradiation in human skin in vivo. Transcripts of all six CCN genes were expressed in human skin in vivo. CCN5 was most abundantly expressed followed by CCN2>CCN3>CCN1>CCN4>CCN6. Solar-simulated ultraviolet irradiation increased mRNA expression of CCN1 and CCN2. In contrast, mRNA levels of CCN3, CCN4, CCN5, and CCN6, were reduced. Knowledge gained from this study provides the foundation to explore the functional roles of CCN gene products in cutaneous biology and responses to solar ultraviolet irradiation

    Eukaryotic Protein Kinases (ePKs) of the Helminth Parasite Schistosoma mansoni

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Schistosomiasis remains an important parasitic disease and a major economic problem in many countries. The <it>Schistosoma mansoni </it>genome and predicted proteome sequences were recently published providing the opportunity to identify new drug candidates. Eukaryotic protein kinases (ePKs) play a central role in mediating signal transduction through complex networks and are considered druggable targets from the medical and chemical viewpoints. Our work aimed at analyzing the <it>S. mansoni </it>predicted proteome in order to identify and classify all ePKs of this parasite through combined computational approaches. Functional annotation was performed mainly to yield insights into the parasite signaling processes relevant to its complex lifestyle and to select some ePKs as potential drug targets.</p> <p>Results</p> <p>We have identified 252 ePKs, which corresponds to 1.9% of the <it>S. mansoni </it>predicted proteome, through sequence similarity searches using HMMs (Hidden Markov Models). Amino acid sequences corresponding to the conserved catalytic domain of ePKs were aligned by MAFFT and further used in distance-based phylogenetic analysis as implemented in PHYLIP. Our analysis also included the ePK homologs from six other eukaryotes. The results show that <it>S. mansoni </it>has proteins in all ePK groups. Most of them are clearly clustered with known ePKs in other eukaryotes according to the phylogenetic analysis. None of the ePKs are exclusively found in <it>S. mansoni </it>or belong to an expanded family in this parasite. Only 16 <it>S. mansoni </it>ePKs were experimentally studied, 12 proteins are predicted to be catalytically inactive and approximately 2% of the parasite ePKs remain unclassified. Some proteins were mentioned as good target for drug development since they have a predicted essential function for the parasite.</p> <p>Conclusions</p> <p>Our approach has improved the functional annotation of 40% of <it>S. mansoni </it>ePKs through combined similarity and phylogenetic-based approaches. As we continue this work, we will highlight the biochemical and physiological adaptations of <it>S. mansoni </it>in response to diverse environments during the parasite development, vector interaction, and host infection.</p

    Connective tissue growth factor(CCN2), a pathogenic factor in diabetic nephropathy. What does it do? How does it do it?

    Get PDF
    Connective tissue growth factor (CTGF/CCN2) is a member of the CCN family of matricellular proteins. Its expression is induced by a number of factors including TGF-Ξ². It has been associated with fibrosis in various tissues including the kidney. Diabetic nephropathy (DN) develops in about 30% of patients with diabetes and is characterized by thickening of renal basement membranes, fibrosis in the glomerulus (glomerulosclerosis), tubular atrophy and interstitial fibrosis, all of which compromise kidney function. This review examines changes in CTGF expression in the kidney in DN, the effects they have on glomerular mesangial and podocyte cells and the tubulointerstitium, and how these contribute to driving fibrotic changes in the disease. CTGF can bind to several other growth factors modifying their function. CTGF is also able to interact with receptors on cells, including integrins, tyrosine receptor kinase A (TrkA), low density lipoprotein receptor-related protein (LRP) and heparan sulphate proteoglycans. These interactions, the intracellular signalling pathways they activate, and the cellular responses evoked are reviewed. CTGF also induces the expression of chemokines which themselves have pharmacological actions on cells. CTGF may prompt some responses by acting through several different mechanisms, possibly simultaneously. For example, CTGF is often described as an effector of TGF-Ξ². It can promote TGF-Ξ² signalling by binding directly to the growth factor, promoting its interaction with the TGF-Ξ² receptor; by triggering intracellular signalling on binding the TrkA receptor, which leads to the transcriptional repression of Smad7, an inhibitor of the TGF-Ξ² signalling pathway; and by binding to BMP-7 whose own signalling pathway opposing TGF-Ξ² is inhibited, leading to enhanced TGF-Ξ² signalling

    Proteins on the catwalk: modelling the structural domains of the CCN family of proteins

    Get PDF
    The CCN family of proteins (CCN1, CCN2, CCN3, CCN4, CCN5 and CCN6) are multifunctional mosaic proteins that play keys roles in crucial areas of physiology such as angiogenesis, skeletal development tumourigenesis, cell proliferation, adhesion and survival. This expansive repertoire of functions comes through a modular structure of 4 discrete domains that act both independently and in concert. How these interactions with ligands and with neighbouring domains lead to the biological effects is still to be explored but the molecular structure of the domains is likely to play an important role in this. In this review we have highlighted some of the key features of the individual domains of CCN family of proteins based on their biological effects using a homology modelling approach

    The Germinal Center Kinase GCK-1 Is a Negative Regulator of MAP Kinase Activation and Apoptosis in the C. elegans Germline

    Get PDF
    The germinal center kinases (GCK) constitute a large, highly conserved family of proteins that has been implicated in a wide variety of cellular processes including cell growth and proliferation, polarity, migration, and stress responses. Although diverse, these functions have been attributed to an evolutionarily conserved role for GCKs in the activation of ERK, JNK, and p38 MAP kinase pathways. In addition, multiple GCKs from different species promote apoptotic cell death. In contrast to these paradigms, we found that a C. elegans GCK, GCK-1, functions to inhibit MAP kinase activation and apoptosis in the C. elegans germline. In the absence of GCK-1, a specific MAP kinase isoform is ectopically activated and oocytes undergo abnormal development. Moreover, GCK-1- deficient animals display a significant increase in germ cell death. Our results suggest that individual germinal center kinases act in mechanistically distinct ways and that these functions are likely to depend on organ- and developmental-specific contexts
    • …
    corecore