124 research outputs found

    Effect of dietary macronutrient composition and buffering capacity on chyme characteristics and digestion kinetics in the gastrointestinal tract of freshwater rainbow trout (Oncorhynchus mykiss)

    Get PDF
    The aim of this study was to investigate the impact of dietary macronutrient composition and buffering capacity (BC) on chyme characteristics and digestion kinetics in freshwater rainbow trout (Oncorhynchus mykiss). Dietary macronutrient composition was altered by changing the protein-to-energy ratio (P:E) while keeping the fat-to-starch ratio constant. Dietary BC was increased by supplementation of CaCO3. The experiment lasted for 6 weeks. Fish were fed four diets having high and low P:E ratio and high and low CaCO3 level. This experiment was planned according to a 2x2x2 factorial design. The three factors were dietary P:E ratio, BC and time sampling after feeding (3 and 7 h). Chyme was collected from four gastrointestinal tract (GIT) segments (stomach, proximal, middle and distal intestine) and analysed for dry matter (DM), pH, osmolality, crude protein (CP) and mineral content. Relative water fluxes (RWF), electrolyte fluxes, kinetic of digestion and faecal digestibility (ADCs) were measured using yttrium oxide (Y2O3) as an inert marker. All chyme characteristics (including water fluxes) were not influenced by the interaction effect between dietary factors and sampling time (p > 0.05). Both dietary treatments did not affect chyme DM in the stomach. Low P:E diet increased (p < 0.001) chyme DM in all the intestinal segments. Dietary CaCO3 only affected (p < 0.05) chyme DM in the distal intestine. Low P:E diet decreased (p < 0.001) chyme pH in all GIT segments compared to the high P:E diet. Low CaCO3 diet decreased chyme pH in the proximal and middle intestine (p < 0.05) compared to the high CaCO3 diet. RWF were affected only by the dietary P:E ratio in the stomach and in the proximal intestine. Fish fed the high P:E diet had a lower water influx in the stomach and a higher water influx in the proximal intestine than fish fed the low P:E diet. Dietary P:E ratio affected electrolyte fluxes in the GIT, while no effect of CaCO3 was detected. Both dietary factors had a minimal or no effect on the kinetic of digestion in the different GIT segments, while a significant effect was present in all ADCs. Our findings suggest that dietary macronutrient composition, rather than buffering capacity, is the primary factor responsible for changes in chyme characteristics, water and ion fluxes in the GIT of freshwater rainbow trout. Furthermore, changes in dietary macronutrient composition and buffering capacity significantly affect faecal digestibility but are not reflected in digestion kinetics.publishedVersio

    Atom lithography with two-dimensional optical masks

    Full text link
    With a two-dimensional (2D) optical mask, nanoscale patterns are created for the first time in an atom lithography process using metastable helium atoms. The internal energy of the atoms is used to locally damage a hydrofobic resist layer, which is removed in a wet etching process. Experiments have been performed with several polarizations for the optical mask, resulting in different intensity patterns, and corresponding nanoscale structures. The results for a linear polarized light field show an array of holes with a diameter of 260 nm, in agreement with a computed pattern. With a circularly polarized light field a line pattern is observed with a spacing of 766 nm. Simulations taking into account many possible experimental imperfections can not explain this pattern.Comment: 5 pages, 4 figure

    Quenched Narrow-Line Laser Cooling of 40Ca to Near the Photon Recoil Limit

    Get PDF
    We present a cooling method that should be generally applicable to atoms with narrow optical transitions. This technique uses velocity-selective pulses to drive atoms towards a zero-velocity dark state and then quenches the excited state to increase the cooling rate. We demonstrate this technique of quenched narrow-line cooling by reducing the 1-D temperature of a sample of neutral 40Ca atoms. We velocity select and cool with the 1S0(4s2) to 3P1(4s4p) 657 nm intercombination line and quench with the 3P1(4s4p) to 1S0(4s5s) intercombination line at 553 nm, which increases the cooling rate eight-fold. Limited only by available quenching laser power, we have transferred 18 % of the atoms from our initial 2 mK velocity distribution and achieved temperatures as low as 4 microK, corresponding to a vrms of 2.8 cm/s or 2 recoils at 657 nm. This cooling technique, which is closely related to Raman cooling, can be extended to three dimensions.Comment: 5 pages, 4 figures; Submitted to PRA Rapid Communication

    Magneto-optical trap for metastable helium at 389 nm

    Full text link
    We have constructed a magneto-optical trap (MOT) for metastable triplet helium atoms utilizing the 2 3S1 -> 3 3P2 line at 389 nm as the trapping and cooling transition. The far-red-detuned MOT (detuning Delta = -41 MHz) typically contains few times 10^7 atoms at a relatively high (~10^9 cm^-3) density, which is a consequence of the large momentum transfer per photon at 389 nm and a small two-body loss rate coefficient (2 * 10^-10 cm^3/s < beta < 1.0 * 10^-9 cm^3/s). The two-body loss rate is more than five times smaller than in a MOT on the commonly used 2 3S1 -> 2 3P2 line at 1083 nm. Furthermore, we measure a temperature of 0.46(1) mK, a factor 2.5 lower as compared to the 1083 nm case. Decreasing the detuning to Delta= -9 MHz results in a cloud temperature as low as 0.25(1) mK, at small number of trapped atoms. The 389 nm MOT exhibits small losses due to two-photon ionization, which have been investigated as well.Comment: 11 page

    Adaptable-radius, time-orbiting magnetic ring trap for Bose-Einstein condensates

    Full text link
    We theoretically investigate an adjustable-radius magnetic storage ring for laser-cooled and Bose-condensed atoms. Additionally, we discuss a novel time-dependent variant of this and other ring traps. Time-orbiting ring traps provide a high optical access method for spin-flip loss prevention near a storage ring's circular magnetic field zero. Our scalable storage ring will allow one to probe the fundamental limits of condensate Sagnac interferometry.Comment: 5 pages, 3 figures. accepted in J Phys

    Doppler cooling and trapping on forbidden transitions

    Get PDF
    Ultracold atoms at temperatures close to the recoil limit have been achieved by extending Doppler cooling to forbidden transitions. A cloud of ^40Ca atoms has been cooled and trapped to a temperature as low as 6 \mu K by operating a magneto-optical trap on the spin-forbidden intercombination transition. Quenching the long-lived excited state with an additional laser enhanced the scattering rate by a factor of 15, while a high selectivity in velocity was preserved. With this method more than 10% of pre-cooled atoms from a standard magneto-optical trap have been transferred to the ultracold trap. Monte-Carlo simulations of the cooling process are in good agreement with the experiments

    Novel Ferromagnetic Atom Waveguide with in situ loading

    Get PDF
    Magneto-optic and magnetostatic trapping is realized near a surface using current carrying coils wrapped around magnetizable cores. A cloud of 10^7 Cesium atoms is created with currents less than 50 mA. Ramping up the current while maintaining optical dissipation leads to tightly confined atom clouds with an aspect ratio of 1:1000. We study the 3D character of the magnetic potential and characterize atom number and density as a function of the applied current. The field gradient in the transverse dimension has been varied from < 10 G/cm to > 1 kG/cm. By loading and cooling atoms in-situ, we have eliminated the problem of coupling from a MOT into a smaller phase space.Comment: 4 pages, 4 figure

    Observation of Caustics in the Trajectories of Cold Atoms in a Linear Magnetic Potential

    Full text link
    We have studied the spatial and temporal dynamics of a cold atom cloud in the conservative force field of a ferromagnetic guide, after laser cooling has been switched off suddenly. We observe outgoing 'waves' that correspond to caustics of individual trajectories of trapped atoms. This provides detailed information on the magnetic field, the energy distribution and the spin states.Comment: 21 pages, incl. 12 figure

    Compact, Robust Source of Cold Atoms for Efficient Loading of a Magnetic Guide

    Full text link
    We report a compact (<20cm3), robust source for producing a bright flux of cold atoms, which can be loaded efficiently into a magnetic guide. A continuous flux of up to 8 x 109 87Rb atoms/s have been produced from this 2D+ vapor cell MOT. The flux had a divergence of 12.5 mrad and velocity could be controlled in the range 2-15 m/s. This flux was coupled continuously into a magnetic guide with high efficiency.Comment: 20 pages, 4 figure

    Colistin resistance mutations in phoQ can sensitize Klebsiella pneumoniae to IgM-mediated complement killing

    Get PDF
    International audienceAbstract Due to multi-drug resistance, physicians increasingly use the last-resort antibiotic colistin to treat infections with the Gram-negative bacterium Klebsiella pneumoniae. Unfortunately, K. pneumoniae can also develop colistin resistance. Interestingly, colistin resistance has dual effects on bacterial clearance by the immune system. While it increases resistance to antimicrobial peptides, colistin resistance has been reported to sensitize certain bacteria for killing by human serum. Here we investigate the mechanisms underlying this increased serum sensitivity, focusing on human complement which kills Gram-negatives via membrane attack complex (MAC) pores. Using in vitro evolved colistin resistant strains and a fluorescent MAC-mediated permeabilization assay, we showed that two of the three tested colistin resistant strains, Kp209_CSTR and Kp257_CSTR, were sensitized to MAC. Transcriptomic and mechanistic analyses focusing on Kp209_CSTR revealed that a mutation in the phoQ gene locked PhoQ in an active state, making Kp209_CSTR colistin resistant and MAC sensitive. Detailed immunological assays showed that complement activation on Kp209_CSTR in human serum required specific IgM antibodies that bound Kp209_CSTR but did not recognize the wild-type strain. Together, our results show that developing colistin resistance affected recognition of Kp209_CSTR and its killing by the immune system
    corecore