4,733 research outputs found

    From infinite to two dimensions through the functional renormalization group

    Full text link
    We present a novel scheme for an unbiased and non-perturbative treatment of strongly correlated fermions. The proposed approach combines two of the most successful many-body methods, i.e., the dynamical mean field theory (DMFT) and the functional renormalization group (fRG). Physically, this allows for a systematic inclusion of non-local correlations via the flow equations of the fRG, after the local correlations are taken into account non-perturbatively by the DMFT. To demonstrate the feasibility of the approach, we present numerical results for the two-dimensional Hubbard model at half-filling.Comment: 5 pages, 4 figure

    Stochastic optimization of a cold atom experiment using a genetic algorithm

    Full text link
    We employ an evolutionary algorithm to automatically optimize different stages of a cold atom experiment without human intervention. This approach closes the loop between computer based experimental control systems and automatic real time analysis and can be applied to a wide range of experimental situations. The genetic algorithm quickly and reliably converges to the most performing parameter set independent of the starting population. Especially in many-dimensional or connected parameter spaces the automatic optimization outperforms a manual search.Comment: 4 pages, 3 figure

    A single atom detector integrated on an atom chip: fabrication, characterization and application

    Full text link
    We describe a robust and reliable fluorescence detector for single atoms that is fully integrated into an atom chip. The detector allows spectrally and spatially selective detection of atoms, reaching a single atom detection efficiency of 66%. It consists of a tapered lensed single-mode fiber for precise delivery of excitation light and a multi-mode fiber to collect the fluorescence. The fibers are mounted in lithographically defined holding structures on the atom chip. Neutral 87Rb atoms propagating freely in a magnetic guide are detected and the noise of their fluorescence emission is analyzed. The variance of the photon distribution allows to determine the number of detected photons / atom and from there the atom detection efficiency. The second order intensity correlation function of the fluorescence shows near-perfect photon anti-bunching and signs of damped Rabi-oscillations. With simple improvements one can boost the detection efficiency to > 95%.Comment: 24 pages, 11 figure
    corecore