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1. Introduction

In 1924/25, Satyendranath Bose and Albert Einstein predicted that particles of integer
spin (today called bosons) should undergo a quantum statistical phase transition when
cooled to temperatures very close to absolute zero (Bose, 1924; Einstein, 1925). This
phenomenon, nowadays called Bose-Einstein condensation, has been experimentally
observed seventy years later using ultracold (nanokelvin temperatures) gases of bosonic
neutral atoms (Anderson et al., 1995; Bradley et al., 1995; Davis et al., 1995c). This spectacular
experimental achievement was awarded the Nobel price in 1995 and has triggered a new
research direction "ultracold quantum gases" with more than 200 groups worldwide today. 1

Bose-Einstein condensates (BEC) of ultracold atomic gases represent a fascinating exotic state
of matter with properties entirely determined by the laws of quantum mechanics. Although
they consisting of several thousands up to millions of atoms, the quantum state can in most
cases be described by a single collective wave function with a common quantum phase. This
wave function usually has a spatial extent ranging between 1-100 microns, allowing us to
observe quantum mechanics essentially by eye using basic magnification optics.
The Bose-Einstein condensate can be described as a coherent matter wave in close analogy
to the optical field emitted by (or inside) a laser. This analogy has brought about the field of
"quantum-atom-optics" which aims to implement standard elements and experiments known
from laser optics using matter waves. As heavy rest mass particles, such as atoms, are very
sensitive to gravity or acceleration/rotations, matter-wave interferometers promise orders of
magnitude in sensitivity gain compared to their photonic counterparts (Berman, 1996).
Over the last decade, experimental tools for the creation and manipulation of ultracold
quantum matter have reached an impressive degree of sophistication. This allows the
construction of tailored Hamiltonians for the system and the "quantum simulation" of
more general physical situations, not connected to atomic physics alone. Optical lattice
potentials allow to mimic solid state physics with a high degree of control over essentially
all experimental parameters. Particle interactions can be tuned via Feshbach resonances,
allowing the study of superconductivity, superfluidity and the formation of ultracold

1 (n.d.). see atom traps world wide: http://www.uibk.ac.at/exphys/ultracold/atomtraps.html and links
therein.
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molecules. One-dimensional and two-dimensional quantum systems have been realized with
ultracold gases in constrained geometries. Experiments have also been extended to fermionic
atoms which follow completely different quantum statistics at low temperatures and will one
day allow to simulate electrons.
The creation of an ultracold gas of atoms is a complex and delicate procedure which
involves many steps like laser cooling, conservative atom trapping, evaporative cooling etc.
The fundamental steps common to most experimental approaches will briefly be outlined
in section 2. Together with the actual experiment to be performed and the detection, a
whole experimental sequence takes between several tens of seconds and a few minutes.
Some operations within this sequence take place (and have to be timed) on a microsecond
timescale, hence a computer based experimental control is inevitable. As the detection of
the system is almost always destructive, the experimental cycle has to be repeated many
times to accumulate statistics or vary experimental parameters. Complex optimizations or
multi-parameter scans can require several days of continuous operation.
In most setups working with ultracold atoms the result of an experiment is an image of the
atomic density distribution (see section 2.2 for details). These images are acquired using
computer controlled CCD cameras, yielding a graphical file for immediate data processing.
With modern computers and efficient algorithms, the analysis of a single result image takes
a few seconds, usually much faster than the entire experimental cycle. Hence effectively
real-time analysis for various feedback schemes is available, which is the basis for the
stochastic optimization methods described herein.
In our work, we close the loop between computer-based experimental control and equally
computer-based real-time analysis to automatically optimize various experimental tasks using
a genetic algorithm (GA). These tasks range from optimizing specific parts of the experimental
sequence for optimal result parameters (atom number, temperature, phase space density) to
complex ramp shapes that produce quantum gases in specific external or internal states. To
our knowledge, there are very few implementations of stochastic optimization to physical
systems. Aside from our experiment (Rohringer et al., 2008; Wilzbach et al., 2009), some
examples are the optimization of the temporal shape of laser pulses (Baumert et al., 1997), or
the tailoring of pulse shapes to control chemical reactions (Assion et al., 1998).
We wish to underline that none of the methods described here is specific to our experimental
setup or physical system. This approach is applicable in a large variety of fields of
experimental and industrial research.
The following chapter will start with a brief and general introduction to experiments with
ultracold atoms in section 2. In section 3 we describe the implementation and internal
structure of the GA. Examples of stochastic optimizations on various levels are given in
section 4. For comparison, a brief overview of purely computer-based optimization tasks is
given in section 5. In section 6 we close with a summary and outlook on further developments.

2. Experiments with ultracold quantum gases

This section will give a brief introduction to experiments with ultracold atoms. Since the first
realization of Bose-Einstein condensation in 1995, experimental techniques have evolved and
diversified. We will focus on the major steps which are still common to most approaches and
which are necessary to understand the optimizations performed and presented in section 4.
For simplicity, we divide an experimental cycle into two main phases: first the preparation of
the ultracold gas or Bose-Einstein condensate, which in itself consists of several stages. The
second phase concerns the detection of the sample after manipulation, and the acquisition
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of significant physical quantities. These allow an evaluation of the experiment run and
the chosen experimental parameters. This analysis is the starting point for the genetic
optimization routines described in sections 3 and 4. For a more comprehensive review on
the creation and characterization of ultracold Bose and Fermi gases see (Ketterle et al., 1998)
and (Ketterle & Zwierlein, 2008) .

2.1 Preparation of ultracold atomic gases

In the following, we characterize a gas of neutral atoms by its temperature T, and by the

corresponding de Broglie wavelength λdB = (2πh̄2/mkBT)1/2, where m is the mass of the
atom and kB is Boltzmanns constant.
The de Broglie wavelength can be regarded as the size of a quantum mechanical wave function
of an individual atom of the gas. It increases as the gas gets colder. The gas density n is related
to the average distance d between atoms through n = d−1/3. The quantum phase transition
to a Bose-Einstein condensate takes place when bosonic atoms are cooled to a point where
the atomic wavepackets start to overlap, more precisely at a critical temperature Tc where the
phase space density nλ3

dB ≈ 2.612. This temperature Tc is typically between 100 nK and 1 µK,

the atomic density is between 1013 cm−3 and 1014 cm−3 (compare figure 1).
The starting point for experiments with ultracold quantum gases is usually a thermally
activated source of neutral atoms, providing particles at temperatures around 500 K and
densities of 108 cm−3. 2 Therefore to reach Bose-Einstein condensation the temperature has to
be reduced by 9 orders of magnitude, while the atomic density needs to be increased by up
to 6 orders of magnitude. This enourmous cooling power is attained by using a combination
of extremely efficient techniques which will be briefly outlined in the following. A schematic
trajectory through phase space on the path towards Bose-Einstein condensation is depicted in
figure 1.

Fig. 1. Schematic representation of a typical trajectory through phase space in a Bose-Einstein
condensation experiment. The various steps are explained in the text.

2 The densities at the starting point of the experiment vary significantly depending on the specific
approach, they may reach 1014 cm−3 in high flux Zeeman slowers.
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2.1.1 Laser cooling

Laser cooling and trapping relies on light forces, emerging when a (near-) resonant laser
interacts with atomic transitions (see (Metcalf, 1999) for a detailed description). When an
atom absorbs a photon of energy hνatom, its momentum changes by h̄k = 2πνatom/c where k
is the wave vector of the laser. When (spontaneously) emitting the photon again, the atom
momentum changes again by h̄k. While the momentum "kick" in emission is in random
direction and averages out over many absorption-emission cycles, the momentum transfer
in absorption is directive, pointing in the direction of the laser (light pressure). Hence,
on average, one recoil momentum of 2πνatom/c is transferred to the atom per cycle. The
interaction with the laser changes the momentum of an atom, which is the action of a "light
force". This force is only determined by the frequency νatom and the scattering rate R of the
atom: F = ṗ = h̄kR with

R =
Γ

2

s0

1 + s0 + (2∆/Γ)2
(1)

where Γ = 1/τ is the transition linewidth, s0 = I/Isat is the saturation parameter, Isat is the
saturation intensity of the atomic transition and ∆ = νatom − νlaser the laser detuning with
respect to the atomic transtion frequency νatom. The maximum light force amounts to Fmax =
Γh̄k/2 on resonance and is hence mainly determined by the linewidth of the used atomic
transition. For the 780 nm D2 transition of 87Rubidium used in the experiments presented
here, the acceleration of an atom at rest by a resonant laser is a ≈ 105 m/s2, four orders of
magnitudes higher than gravity!
Under the influence of the light force, the atom changes its velocity v quickly, giving rise to the
Doppler effect. The laser now interacts with an effective detuning ∆e f f = ∆+ kv. After a series

of absorption-emission cycles, (≈ 800 in the case of 87Rubidium), the effective detuning is so
large that no further interaction with the laser takes place. Turning this argument around,
choosing the detuning of the laser allows to selectively address a specific velocity class of
atoms, making the light force velocity-dependent. If the laser frequency is tuned below the
atomic resonance frequency νatom ("red" detuning), the laser preferably interacts with atoms
moving towards the laser, slowing them down. This method is routinely employed to slow
down atomic beams coming from a hot thermal source (Metcalf, 1999).
If two counterpropagating laser beams of equal intensity and frequency are used on the atoms,
the resulting light force has a dispersion-like shape. Around zero velocity, the force can be
approximated to

F = h̄k2 8s0∆/Γ

(1 + (2∆/Γ)2)2
v. (2)

The light force takes the form of a friction or "molasses” force (optical molasses, see below).
The cooling strength can be adjusted again by adjusting the detuning ∆. A smaller (red)
detuning leads to colder temperatures. However a more narrow velocity class is then
addressed by the laser, leading to a lower number of cooled atoms. Therefore a compromise
between number and temperature has to be found experimentally. An optimization of laser
cooling parameters using a stochastic GA can be found in section 4.
The above description takes place entirely in momentum/velocity space, so far no spatial
dependence and hence no trapping is introduced. To render the optical cooling force spatially
dependent, the magnetic Zeemann effect is employed. Using a quadrupole magnetic field (e.g.
generated by coils in anti-Helmholtz configuration) the atomic transition is shifted, depending
on the position. With the right laser detuning (and polarization) and the right quadrupole field
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the effective cooling force can be designed so that it points towards zero magnetic field, where
the atoms will accumulate. The scheme can easily be extended to three dimensions, realizing
a true 3d trapping of neutral atoms in free space.
The combination of optical and magnetic fields to at the same time cool and spatially trap
atoms is called magneto-optical-trap (MOT) and has become a standard tool in atomic physics.
Its development, together with a thorough theoretical explanation of the relevant effects, led
to the award of a Nobel price in 1997 (Chu, 1998; Cohen-Tannoudji, 1998; Phillips, 1998).
A MOT usually catches atoms from the low-velocity tail (≈ 10 m/s) of the thermal distribution
of a background gas at room temperature or from a slowed atomic beam. Typical total atom
numbers (87Rubidium) are 108 − 109 with a density of 1011 cm−3 and a temperature of ≈
200 µK. This constitutes a significant step towards Bose-Einstein condensation, as illustrated
in figure 1. Almost all experiments with ultracold gases start with a phase of magneto-optical
trapping.

2.1.2 Optical molasses

As described above, the experimental settings used in a magneto-optical trap are usually
optimized for trapping high number of atoms, rather than for obtaining the lowest possible
temperatures. Before loading atoms from a MOT into a conservative trapping scheme, a short
phase of "optical molasses" (1-100 ms) is employed to further lower the temperature of the
gas. Here, the magnetic fields are quickly switched off, extinguishing the spatial trapping.
The lasers are adjusted to different detunings (usually significantly further from the atomic
resonance) and amplitudes to provide an optimal optical molasses. Atoms hence expand in
the laser field, but reduce their kinetic energy (and hence the temperature of the sample, once
recaptured in a conservative trap). As the atoms fulfill a damped Brownian motion, they will
ultimately diffuse out of the volume that can be captured by a conservative trap. Again a
compromise has to be found between temperature (favoring long molasses times) and atom
number (favoring short molasses times) to be transferred.
Several different processes contribute to the enhanced cooling in the optical molasses, such as
Sisyphus cooling or dark state effects which go beyond the simple model of Doppler cooling
described above. For a comprehensive overview see (Metcalf, 1999).

2.1.3 Conservative atom trapping

Even though laser cooling and optical molasses allow an enormous gain in phase space
density, there are fundamental limits. As all optical forces rely on absorption and successive
emission of photons, the random momentum transfer in spontaneous emission induces a
heating mechanism which limits the temperatures that can be achieved. A lower bound,
termed the recoil limit, can be obtained by calculating the energy associated with a single
photon recoil:

Erecoil = kBTrecoil =
h̄2k2

2m
. (3)

For 87Rubidium atoms and the standard 780 nm D2 transition, this corresponds to a
temperature of 0.4 µK.
Therefore to confine and further cool the gas, another trapping scheme has to be employed
which does not rely on photon exchange. Such traps can be constructed using the interaction
of an electric3 or magnetic dipole moment with external electric or magnetic fields. These

3 Note that most experiments with ultracold atoms are performed with alkali atoms, where the electric
dipole moment is only induced in the presence of en external electric field.
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Fig. 2. (a) Schematic representation of a magnetic wire trap. The combination of a
homogeneous external magnetic field and the magnetic field of a current carrying wire gives
rise to a three-dimensional potential minimum above the wire, that can be used to trap and
manipulate neutral atoms. (b) Experimental implementation of a wire trap using an atom
chip. The position of the central trapping wire is indicated in red. Optical fibres used for
on-chip fluorescence detection can also be seen.

fields give rise to a shift of the internal atomic energy via the Stark or Zeemann effect which
acts as an effective potential for the atoms. As the experiments described in the following only
employ magnetic interactions, we will concentrate on magnetic trapping. A comprehensive
review on optical trapping relying on the electric interaction can be found in (Grimm et al.,
2000).
The interaction of an atomic magnetic moment �µ with an external, inhomogeneous magnetic

field �B(�r) gives rise to the potential V(�r) = −�µ�B(�r). Solving the Zeeman Hamiltonian within
an adiabatic approximation gives rise to the magnetic quantum numbers mF and we can
write the potential V(�r) = mFgFµB|B(�r)|, where gF is the Landé factor and µB the Bohr
magneton. For atomic states where mFgF > 0 atoms are attracted to a spatial minimum of the
magnetic field ("low-field seekers") whereas for mFgF < 0 atoms are attracted to a magnetic
field maximum ("high-field seekers")4. From Maxwell’s equations, one can derive that only
a minimum of magnetic field can be created in free space, hence only low-field seekers can
be trapped magnetically (Wing, 1984). All experiments described in the following are in the
|F = 2, mF = 2 > state of 87Rubidium, where gF = 1/2.
To give an order of magnitude: a magnetic field of 1 Gauss (10−4 Tesla) leads to a potential
energy of kB × 67 µK. As magnetic traps usually work with tens of Gauss, atomic clouds
prepared by laser cooling and optical molasses (≈ 50 µK) can easily be captured. However,
directly catching from room temperature background gas would require hundreds of Tesla.
A plethora of magnetic field configurations has been developed over time to trap atoms
and reviewing them here is beyond the scope of this chapter. An overview can be found
in (Ketterle et al., 1998). A simple and elegant way to produce magnetic traps with strong
spatial confinement are wire traps as used in the experiments described below (Folman et al.,
2002; Fortagh & Zimmermann, 2007). In brief, combining the magnetic field of a current
carrying wire and homogeneous fields produced by external coils creates a magnetic trap
following the geometry of the wire (compare figure 2). Integrating these trapping wires
by using techniques from electronic circuit lithography ("atom chips") allows the creation of
potential landscapes and provides a high degree of spatial control over the atomic gas, with

4 Obviously, atoms in the mF = 0 state are insensitive to magnetic fields
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high temporal resolution. Bose-Einstein condensation on a chip was first demonstrated in
2001 (Hänsel et al., 2001; Ott et al., 2001; Schneider et al., 2003), and atom chips have since
then become a standard tool in ultracold atom research.

2.1.4 Evaporative cooling

Magnetic trapping as described above provides a means to confine neutral atoms of a
specific temperature in free space. However, as magnetic (and also electric) potentials
are conservative, no cooling takes place. The temperature of the gas can be changed by
(adiabatically) changing the atomic confinement, however, phase space density is maintained
and hence no progress towards Bose-Einstein condensation can be made.

Fig. 3. (a) Principle of evaporative cooling. A thermal Maxwell-Boltzmann distribution
characterized by a temperature Ti is truncated at energy Etrunc with Etrunc > kBTi. The
truncated system relaxes to thermal equilibrium at a lower temperature Tf . (b) Selective
removal of hot atoms by adjusting the frequency ωRF driving spin flip transitions to
untrapped states.

To gain in phase space density and decrease the gas temperature in a steady trap, an additional
cooling mechanism termed "evaporative cooling" is employed. Similar to blowing onto a
coffee cup, evaporative cooling relies on the selective removal of energetic (hot) particles. The
system successively relaxes back to thermodynamic equilibrium (via particle collisions) at a
lower temperature (see figure 3).
To selectively remove hot atoms from the magnetic trap, spin-flip transitions between trapped
and untrapped Zeeman states are induced using radio frequency (RF) fields. By choosing the
RF-field’s frequency, the transitions occur at distinct regions in space (magnetic equipotential
surfaces). The "hottest" atoms with highest kinetic energy explore the outwardmost regions
of the magnetic trap, so these can be removed selectively ("RF knife"). As the system
re-thermalizes at lower temperature, the frequency of the RF field has to be adjusted. This
leads to dynamic forced evaporative cooling with time (Davis et al., 1995b; Luiten et al., 1996).
As illustrated in figure 1, evaporative cooling allows to reduce the temperature of a
gas by another two orders of magnitude and has enabled the creation of Bose-Einstein
condensates (Davis et al., 1995a). However, the atom number is reduced by a similar factor.
So far, no cooling method able to achieve such low temperatures while maintaining the
initial atom number has been found. The details of the evaporative cooling process crucially
depend on the details of the experimental implementation, in particular on the lifetime of
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the magnetically trapped atoms and the collision and hence re-thermalization rate. The
optimization of evaporative cooling using a stochastic GA is described in section 4.

2.2 Detection

Most information in ultracold atom experiments is gained through the interaction of atoms
with light. Although several non-optical methods for specific applications or unique atom
species (Santos et al., 2002) are in use, optical imaging is currently the main detection method
for cold atomic gases. As far as imaging is concerned, atom-light interactions can be divided
into three processes: absorption, re-emission and phase alteration of incident light, giving
rise to three detection methods, two of which - absorption and fluorescence imaging - are
used in our experiment5. Both methods result in a picture of the atom cloud, destroying
it in the process. Quantities characterizing the state of the cloud can be extracted either
from a single picture or from a series of images taken while varying one of the experimental
parameters from shot to shot. The following section will describe these quantities and how to
measure them. Suitable light sources for excitation of atoms are lasers tunable in the frequency
range near an atomic transition, while CCD - cameras are ideal detectors for light (or lack
thereof) whenever time resolution is not a critical factor.6 In order to reach the resolutions
needed for the examination of structures like interference fringes or vortices inside cold atomic
clouds, it is neccessary to put special emphasis on the imaging optics, which usually has to be
custom-built for each experiment.

2.2.1 Absorption imaging

This method consists in recording the shadow which an atom cloud casts onto a detector
due to the absorption of a certain fraction of photons when irradiated with laser light. By
comparison with the intensity of the beam in absence of the atomic cloud, the atoms’ density
distribution and a series of other parameters discussed in section 2.2.3 can be calculated. The
detection beam can be absorbed almost completely if the density of the atom cloud becomes
sufficiently high. These optically dense clouds make a quantitative analysis of an absorption
image difficult. In order to compensate for this, it is possible to detune the laser light from
resonance, lowering the absorption cross-section. The former introduces diffraction as well as
a phase shift of the transmitted light, and going to high detunings as well as filtering out the
unscattered transmitted light components leads to dispersive imaging. Absorption imaging
introduces heating: Since each absorbed photon transfers a momentum h̄k to the atom, the
cloud is literally blown away by the imaging light, making absorption imaging a destructive
technique.

2.2.2 Fluorescence imaging

In fluorescence imaging, the atom cloud is also irradiated with a laser beam. However now it
is not the transmitted intensity that is measured, but the number of photons scattered into the
solid angle Ω covered by the detector. If Ω were equal to 4π, fluorescence imaging would just
collect all the photons missing from an absorption picture. However, since the detector usually

has a coverage factor fc =
Ω
4π of a few percent, in comparison the fluorescence signal is about

a factor 100 weaker. Yet, fluorescence imaging has two advantages: In situations where the

5 For a review of dispersive imaging methods, see for example (Ketterle et al., 1998) and references
therein.

6 For fast detection, photomultipliers or avalanche photodiodes are required, trading their advantages
for lower detection efficiency and, in most cases, lower spatial resolution.
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dissipative light force is used to trap the atoms - the MOT and optical molasses phase in our
experiment - fluorescence photons come “for free” and allow non-destructive measurements.
Additionally, fluorescence imaging has favourable properties for imaging dilute atom clouds.
A comparison of the signal to noise ratio (SNR) - neglecting all noise sources except atomic
shot noise - for absorption and fluorescence imaging yields:

SNR f

SNRa
=

√

fc

OD
. (4)

Thus, if the cloud’s optical density OD drops below the coverage factor, fluorescence imaging
becomes better in terms of SNR, at least as long as other noise sources deliver a comparable
contribution for both methods. Hence, fluorescence imaging is the preferred technique for
detecting extremely dilute clouds. In contrast to absorption imaging, fluorescence detectors
need not be exposed to the high light intensities of the source laser illuminating the atoms. As
a consequence, highly sensitive detectors like EMCCD cameras and avalanche photodiode
- based single photon counting modules can be employed. Several techniques based on
fluorescence, like lightsheet imaging (Bücker et al., 2009; Rottmann, 2006) or fiber-based
detection methods allow to detect atomic clouds with single atom sensitivity.

2.2.3 Evaluating absorption images

The intensity of a monochromatic light beam travelling in y - direction through an opaque
medium is attenuated with

dI

dy
= −σIn (5)

where σ denotes the scattering cross-section and n the density of the atomic cloud. As long as
the cross-section is a constant with respect to intensity, i.e. in the case of linear optics defined
by low intensities7, this equation can simply be integrated to yield Lambert - Beer’s law as result:

I = I0e−σn. (6)

If we allow a density distribution in the (x, z) direction, this gives I(x, z) = I0(x, z)e−σnc(x,z),
with column density nc(x, z) =

∫

dy n(x, y, z). The scattering cross-section depends on the

detuning ∆, with σ(∆) = σ0/
(

1 + (2∆/Γ)2
)

. The column density can then be expressed as:

nc(x, z) = σ(∆) ln

(

I0(x, z)

It(x, z)

)

. (7)

This measured column density allows to deduce important basic properties of the dilute
atomic cloud:

• Total atom number
In the continuous case, the total atom number can be obtained by integrating the column
density:

N =
∫

nc(x, z) dx dz. (8)

In the experiment, we have to consider that x and z are discrete, their step size defined
by the area A imaged onto a single CCD pixel, with the magnification M. Therefore, for

7 For high intensities, stimulated emission begins to play a role, leading to an enhanced forward
scattering rate
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a square region of interest containing p pixels, equation 8 becomes the discrete sum over
these pixels:

N = A ∑
p

np(x, y) =
∆xPixel∆yPixel

M2 ∑
p

np(x, y). (9)

• Thermal Atom Density in the Trap

In order to derive temperature or temperature-dependent quantities like phase space
density, or to gain information about the trapping potential, we need a model which
describes the density distribution of the atoms in the trap, as well as its evolution
after releasing the cloud from the trap. Since thermal atom clouds and Bose - Einstein
condensates represent different thermodynamic phases, where density is closely linked to
the phase transition’s order parameter, one expects different behaviour in the two regimes.

Trapping potentials created by static magnetic fields are harmonic around the field
minimum:

V(x, y, z) =
m

2

(

ω2
xx2 + ω2

yy2 + ω2
z z2

)

. (10)

For a thermal cloud of bosons, the density distribution for high temperatures can be
expressed as (Ketterle et al., 1998; Reichl, 1998)

n(r) =

(

2πh̄2

mkBT

)3/2

g3/2 (z (r)) (11)

with z = e(µ−V(x,y,z))/kBT . Here, gj(z) = ∑i
zi

ij is the Bose function, introducing Bose
enhancement, which means increased density compared to the classical case, where the
distribution would be Gaussian. For high temperatures or low densities, we can neglect

Bose enhancement, and with the halfwidths wi =

√

2kBT
mω2

i

, i = x, y, z and zero chemical

potential, we recover a Gaussian distribution:

n(x, y, z) = n0e
−
(

x2

w2
x
+ y2

w2
y
+ z2

w2
z

)

. (12)

Experimentally, we only have access to column densities:

nc(x, z) =
∫

dy n(x, y, z) = n0

√
πwye

−
(

x2

w2
x
+ z2

w2
z

)

= ñ0e
−
(

x2

w2
x
+ z2

w2
z

)

. (13)

We can determine ñ0 by normalization with respect to the atom number:

N =
∫

dx dz nc(x, z) ⇒ ñ0 =
N

πwxwz
. (14)

By comparison with equation 13 we can calculate the peak density of the thermal cloud:

n0 =
ñ0√
πwy

. (15)
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Equivalently, n0 can be determined directly from normalization of equation 12. Since the
picture is integrated along y, we need an assumption about the density distribution on this
axis. Our magnetic traps yield cigar-shaped atom clouds, therefore it usually holds that
wy = wz.

• Temperature
A thermal atom cloud released from a trap by suddenly (non-adiabatically) switching
off the trapping potential expands isotropically, the intitial isotropic velocity distribution
being conserved. The evolution of the cloud’s half-width is given by

wri (t)
2 =

2kBT

mω2
i

+
2kBT

m
t2. (16)

By repeatedly measuring w2
ri

at different times of flight t2 and plotting the two quantities

against each other, the temperature can be determined by the resulting line’s slope 2kBT2

m .
For t = 0, an estimation of the trap frequency in direction ri is possible.

• Phase Space Density
The important quantity which has to reach a treshold value of 2.612 in order to achieve
Bose–Einstein condensation is the phase space density of the atomic cloud:

D = n0 λ3
dB (17)

comprising the peak density n0 and the thermal de Broglie wavelength λdB =
√

2πh̄2

mkBT .

3. Stochastic optimization in an ultracold atom experiment

3.1 Setup of the feedback loop

The goal of our experiment is the investigation of ultracold 87Rubidium clouds in chip - based
magnetic traps, employing all steps involving preparation, manipulation and detection of the
atoms described in the previous sections. The focus lies on the application of fiber optics
integrated directly on the chip as a tool for the detection of ultracold atoms (Heine et al.,
2010).
Figure 4 illustrates our hardware feedback loop. A real-time control system governs the
behavior of the experimental apparatus via 30 output channels providing analog control
voltage signals, as well as 28 digital TTL channels, with a time resolution of 25 µs. The
control channels allow us to manipulate practically all aformentioned experimental quantities,
including laser detunings and intensities, magnetic field strengths and radio frequency fields,
both in timing and magnitude. User input is collected by an interface software written in
MATLAB.
Our absorption images of atomic clouds are taken with a Pixelfly QE interline CCD
camera, read out and evaluated by a MATLAB program on a dedicated computer. The
algorithm providing feedback between acquisition and control software is also implemented
in MATLAB as part of the acquisition software, and communication between acquisition and
control hardware is established via a UDP interface provided by MATLAB.
Briefly, our experimental sequence consists of a magneto-optical trap followed by a molasses
stage. The atoms are then loaded into a magnetic trap created using a macroscopic
wire structure located behind the atom chip, and subsequently cooled using RF-induced
evaporation. All data discussed in section 4 was obtained by absorption imaging of atomic
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clouds released from the magnetic trap at this experimental stage. This point in the sequence
is crucial as it determines the atomic phase space density available for experiments using the
chip structures, including condensation in the chip trap and transport to the fiber detector.

control system experiment setup analysis system

sequence

parameters

control

hardware

imaging

systems

event

evaluaピﾗﾐ

geneピI algorithm

Fig. 4. Scheme of the hardware feedback loop.

In order to perform an experiment, the right set of input parameters for all the devices
integrated within the experiment must be found. While for some devices optimal values can
be directly calculated or gained through simulations, usually it is only possible to constrain
the range of useful values to a certain extent. Within this value range, optimization is
necessary. The typical approach is to scan one variable while fixing all others, and repeating
this procedure for all variables, in some cases iteratively, until satisfactory conditions for
the experiment are met. This is a time consuming task, and inefficient if subsets of these
parameters are coupled.
Instead of performing this task manually, we implement an automatic optimization scheme.
With the availability of a control system allowing relevant parameters to be set via a program
running on a PC, evaluation software capable of automatically acquiring measurements as
well as extracting all interesting information and with the possibility of communication
between these two programs, the technical requirements for the implementation of an
automated optimization scheme directly into a hardware feedback loop are met.
The big number of different optimization problems arising in our setup, depending on the
choice of parameters to optimize, makes the implementation of a deterministic algorithm
unfeasible. On the other hand, stochastic optimization algorithms have been successfully
used in many applications.

3.2 Choice of algorithm

The question can be raised whether it is possible to build an optimal algorithm, outperforming
all the others on all possible optimization problems. However, according to a ’No Free Lunch’
- theorem for search and optimization (Wolpert & Macready, 1995; 1997) there is no such
intrinsically optimal algorithm. This can be expressed as follows:
All algorithms that search for an extremum of an objective function perform exactly the same, when
averaged over all possible objective functions. In particular, if algorithm A outperforms algorithm B on
some objective functions, then loosely speaking there must exist exactly as many other functions where
B outperforms A. (Wolpert & Macready, 1995)
In order to define a performance measure for an algorithm a, let P (dm| f , m, a) be the
conditional probability of obtaining a particular sample dm by iterating an algorithm a m times
on an objective function f . For a finite problem space and a finite space of objective function
values, it can be shown (Wolpert & Macready, 1997) that for any two algorithms a1 and a2 it
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applies that

∑
f

P (dm| f , m, a1) = ∑
f

P (dm| f , m, a2) . (18)

Therefore in order to deliver optimal performance, optimization algorithms have to be
matched or tailored to specific problems. The main point in this context is the balance
between what is called ’exploration versus exploitation’. Any random search mechanisms
within an algorithm contribute to exploration, while gradient search - based elements exploit
the parameter space structure in order to find the optimum. As a consequence, picking an
algorithm and choosing its parameters to fit the problem at hand is as valid an approach as
choosing a specific algorithm.
Out of the many different methods available, we choose to implement a real coded genetic
algorithm (RCGA). Belonging to the first stochastic optimization methods developed, the
convergence behavior of genetic algorithms is well documented for different classes of
problem spaces. They belong to the class of global optimization algorithms, exploiting
information from different parts of the problem space in parallel as opposed to local
algorithms like e.g. stochastic hill climbing or simulated annealing. This property reduces
the probability of premature convergence towards local optima. RCGAs allow to define
states directly from real valued optimization parameters, without any intermediate encoding,
which is simple and intuitive. While early literature suggests that binary encoding is key
to the convergence properties of genetic algorithms, more recent studies, backed up by an
increasing number of applications, have shown that real coded algorithms suffer from no
general disadvantages as compared to other encoding schemes, and even perform better for
many applications.

3.3 Implementation

The basic concept of the algorithm, as depicted in figure 5, is the same as applies to the
initial canonical genetic algorithm and most subsequent implementations. After generation
of a random starting population of states, real valued parameter vectors, the experiment is
performed and evaluated for each state with respect to a measured value representing the
objective function of the optimization problem. Based on the measurement results, the states
are ranked and fitness values are assigned accordingly. The fitness values determine the
probability for each state to be selected as a parent for a recombination procedure providing
the next generation of states. After recombination, each state undergoes mutation, a stochastic
alteration of one of its parameter values, with a preset probability. Subsequently, the next
iteration begins by evaluating the resulting parameter vectors by experiment.
The time consuming process in this setup is evaluating the objective function, which means
performing the experiment, with a duration of 35 seconds. Even more so than in purely
computational applications of GAs, it is crucial to minimize the number of iterations before
finding the optimum. Since runtime crucially depends on the number of states within each
generation, the population size, the design goal is to keep this number as low as possible
while preventing premature convergence due to rapidly decreasing diversity of the states.
Simulations, backed up by our experiments, indicate that with proper adjustment of the
genetic operators, as described in the next section, a population size of 20 states can ensure
reliable convergence behavior for realistic problem spaces.
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stochasピcally generate iniピal generaピon of parameter sets

generate experimental sequence to evaluate individuals

rank individuals according to performance

assign gtness to individuals of one generaピon

choose parent individuals according to gtness

generate children generaピon by recombinaピon

perform mutaピon on individuals of children generaピon

interact with 

experimental 

setup hardware, 

perform experiment,

real ピme analysis

Fig. 5. Basic concept of the genetic algorithm.

3.3.1 Fitness assignment

Most fitness assignment schemes developed for genetic algorithms can be devided into two
different classes: ranking based fitness assignment and proportional fitness assignment. The
latter class has been shown to suffer from two problems, premature convergence and stagnation
(Herrera et al., 1998; Pohlheim, 1999; Weicker, 2002, 2.Auflage 2007).
Ranking - based fitness assignment (Baker, 1985) avoids the two stated problems by
distributing fitness values independently from the actual objective function values. A simple
implementation chosen in our algorithm is linear ranking. Here, the sorted population
members Si, i ∈ {1...Np} are assigned a fittness given by

F (Si) =
2

Np

(

1 − i − 1

Np − 1

)

, (19)

where Np is the population size. This redistributes the fitness values linearly between 0 and 1.
Several nonlinear ranking methods can be applied to shift recombination probability towards
good or bad states.

3.3.2 Selection

Out of several available selection schemes, we chose Stochastic Universal Sampling (SUS), a
variant of roulette selection. Given that each state has a fitness value F (Si) between 0 and
1 with a total fitness of 1, one can interprete the total fitness as the area of a roulette wheel
devided into Np sections with area F (Si). Creating a random number between 0 and 1 and
selecting the state occupying the area including the random number is equivalent to spinning
a roulette wheel and waiting for the pointer to stop in one of the sections. In this picture, SUS
represents a roulette wheel which is spun once with n pointers equally partitioned between 0
and 1. SUS results in zero bias and minimum spread and is a widely used selection method.
In order to speed up convergence, the best 20 percent of the parent states are taken over into
the next generation, providing an elitist selection scheme.

3.3.3 Recombination

Generally, recombination is a genetic operator using two parent states to generate a new state.
For binary strings, this means breaking each of the two strings at specific points and creating
a new string by concatenating fragments stemming from different parents. The only option to
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vary in this case is the number of fragments the parents are broken in, leading to single-point,
multi-point or uniform crossover. The latter represents simply an extreme case of multi-point
crossover, where the m - bit parent states are decomposed into n fragments.
For RCGAs, the state is represented by a string or vector of real numbers. Translating the
idea of crossover to this situation gives what is called discrete recombination. One method
to implement this is to decide for each vector component vj of the child state SC

i (vj) which
parent (P1 or P2) contributes the variable value:

vC
j = vP1

j aj + vP2

j

(

1 − aj

)

. (20)

Here, aj is randomly chosen to be 0 or 1 for each vC
j separately and j ∈ {1, ..., m}, where m

denotes the total number of variables.
With discrete recombination, only variable values already realized in the starting population
can be reached. In order to gain access to new value regions, real number represented
states allow interpolation between two values. The most general recombination scheme to
be derived this way is intermediary recombination. It can be implemented with equation 20,
but an aj picked from the interval [−d, 1 + d] with uniformly distributed probability for each
variable separately. This operator is also called BLX - α (blend crossover), where α equals 2d.
The hypercuboid of possible new values has a volume of

VC
PS = (1 + 2d)

m

∏
j=1

lj (21)

with lj as length of the value region spanned by the variables vP1,P2
j and a total of m variables.

For d = 0, the hypercuboid containing the possible children values is as big as the one spanned
by the parent variables. Since the probability for a child value to lie inside the cuboid is higher
than the probability to lie on its bounds, the cuboid volume will decrease with a growing
number of iterations in this case, restricting the accessible part of the problem space without
any influence of selection. By stretching the children’s value space by the factor (1 + 2d)
one can compensate for this effect. Empirically, a value of d = 0.25 (BLX-0.5) has proven to
conserve the cuboid volume in the limit of a large iteration number.
If aj is not chosen for each variable separately, but rather once in the beginning of the
recombination phase and kept the same for all variables, the linear recombination can be
recovered as special case of intermediary recombination.
Since intermediary recombination with d = 0.25 (BLX-0.5) gives optimal convergence
behaviour in many computer experiments Herrera et al. (1998); Pohlheim (1999), it has been
chosen for our algorithm. Since it delivers real numbers as variable values while our stepsizes
imposes a whole number representation, the routine’s results are rounded to match the nearest
allowed variable value.

3.3.4 Mutation

Mutation in an RGCA means randomly changing values in the state vector. A commonly
used mutation routine has been presented in Mühlenbein & Schlierkamp-Voosen (1993) and
Mühlenbein & Schlierkamp-Voosen (1995), and can be described as follows:

vmut
j = vj + sj · rDj · 2−uκm . (22)
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Here, vmut
j and vj denote the mutated and source states respectively, while sj randomly

chooses the sign of the mutation step, r defines the mutation range as fraction of the variable
definition domain Dj. The last term designates the used distribution characterized by the
random number u which is uniformly distributed in the interval [−1, 1] and the mutation

precision κm. The latter defines a lower limit of 1
2
−κm

for the mutation step size. Favoring
small mutation steps over big ones, nonuniform mutation operators like this have shown to
be advantageous for RCGAs in computer experiments.
From runs on test problems, our algorithm with population sizes between 20 and 30 has
given good results with κm = 10, r = 0.2 and an overall mutation rate of 10 percent. This
is consistent with literature suggesting that optimal mutation rates are inversely proportional
to population size Haupt (2000).

4. Examples of stochastic optimization

4.1 Optimization of an optical molasses

The measurement presented here allows a simple comparison of a grid scan to the
genetic-algorithm approach. The optical molasses has already been briefly described in
section 2.1.2. In this phase, it is possible to reduce the temperature of 87Rubidium atoms
from the magneto-optical trap by an order of magnitude to ensure that a large fraction of the
cloud has low enough energy to be trapped in a conservative magnetic trapping potential.
This phase relies purely on the interaction of atoms with laser light. In our measurement,
the optimized quantity is the atom number within the magnetic trap after the molasses
phase, and the optimized parameters are molasses duration and laser detuning. Variations
in the experimental conditions due for example to environmental noise, lead to a statistical
uncertainty in the measured value. We therefore average over multiple experimental runs to
reduce this uncertainty. The successful optimization of this experimental stage is shown in
figure 6. In the 2d grid scan, we changed the detuning in steps of 5 MHz and the molasses
duration in steps of 0.2 ms, and computed the average of 4 atom-number measurements at
each pair of values, resulting in a scan duration of approximately 17 hours. For the GA
optimization, we used a population size of 20 states and recorded the convergence over
16 generations. In this case, we only averaged over 3 atom number measurements. This
optimization approach led to a reduction of the runtime to approximately 9 hours. The set of
surviving parameters has already clustered near the optimum after this time, demonstrating
the efficiency of the approach.

4.2 Optimization of evaporative cooling in a magnetic trap

The goal of evaporative cooling in a magnetic trap is to increase phase space density (see
sections 2.1.4 and 2.2) of the atomic cloud as efficiently as possible. Efficiency means
maximizing the amount of removed energy per removed atom. Technically, evaporative
cooling as described in 2.1.4 is implemented with the help of an RF source that is tunable in
frequency and therefore can create RF - cooling ramps by lowering the frequency of the applied
field on timescales ranging from milliseconds to seconds. Frequencies from 10 MHz down to
the 100 kHz range with sub - kHz stability and corresponding resolution have to be provided.
In an ideal system, efficiency grows with ramp duration. The slower the ramp, the more time
the system has to stochastically produce atoms with high energy that are removed by the RF
field, while fast cooling means removing more atoms with lower energy. In reality, constraints
for the steepness of these ramps are imposed mainly by two mechanisms: On the one hand,
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Fig. 6. Results of the optical molasses optimization. (a) Plot of the mean fitness per
generation. (b) State Evolution. Blue points correspond to times given in milliseconds,
whereas green points represent laser detunings, in MHz. (c) The plot depicts atom number as
a function of duration and laser detuning. The points indicate the set of surviving
parameters found by the algorithm.

evaporative cooling competes with different loss or heating mechanisms leading to decreasing
phase space density by removal of cold atoms, providing an upper limit for the duration of
useful cooling ramps. On the other hand, it is necessary to ensure that the atomic cloud has
sufficient time to thermalize by interatomic collisions, which provides a lower bound for ramp
duration. The optimum depends critically on technical details and usually has to be found
empirically.
We optimize our RF-cooling ramp to yield a maximum in a dimensionless parameter PSD ∝

N1/3/T, which therefore requires a simultaneous measurement of the atom number N and the
cloud temperature T. The temperature is determined from the expansion of the atom cloud
as it is released from the trap 2. Ours is a cloud with a normal density distribution in the
x-direction, described by

nx ∝ Exp

[

−
(

x

σN(x)

)2
]

. (23)

Here σ is the 1/e−radius of the cloud. The temporal evolution of its spatial extent is given by

σN(x, t) =
√

σ2
N(x, 0) + (σ(vx)× t)2. (24)

The velocity distribution is related to the temperature with σ2(vx) = 2kBTx/m. The
same relationships hold for expansion along the other directions. However, because of the
anisotropy of the trap, the initial cloud size as well as the velocity distribution will be different
along each axis. The trap shape is near-identical along the x- and z-directions, but rather more
elongated along the y-axis. To measure the expansion, we record four absorption images of
the cloud at 4, 8, 12 and 16 ms after release from the trap. These two-dimensional images
allow us to extract the expansion rate for the x- and y− axes, and give us four measurements
of the atom number for a particular set of GA parameters. The fitness of a given parameter set
is determined by averaging over the measured temperatures in the x- and y− axes, as well as
averaging over the atom numbers from the four images.
The cooling ramp under consideration consists of two linear segments determined by three
RF - frequencies and two times (see fig. 7 a). We present two measurements:
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Fig. 7. Example of data for one population member. a) Schematic of an RF - ramp, depicting
the used optimization parameters. Arrows indicate the RF frequencies modified in the 2d -
optimization run. In the 4d scan, the cooling ramp was optimized over the rectangular areas
spanning duration and frequency of the two stages. b) Fits to equation (24) for the x- and y−
axes in red and blue, respectively. The inset panels show absorption images of the atom
cloud as it falls and expands after release from the magnetic trap, at the corresponding times.
Each panel shows a region of approximately 1.5 mm× 1.8 mm.

• A 2d measurement, where the algorithm adjusts the intermediate and final value of the RF
frequency. The values ranges from 0 to 10 and 0 to 1 MHz, respectively.

• A 4d measurement, where the algorithm adjusts both field values from the 2d
measurement as well as both times. RF values range from 2 to 6 and 0.3 to 0.6 MHz
respectively, in steps of 0.01 MHz. The times for the first and second ramp segment can
take values each from 500 to 2000 ms (duration 1) and 500 to 3500 ms (duration 2), in steps
of 1 ms.

The results are summarized in figure 8. Unlike the molasses optimization described above, we
have not compared this measurement to a grid scan. In the case of the 4d-optimization this is
simply not feasible, given that the explored parameter space contains of over 1011 individual
points corresponding to over 10000 years of experiment runtime. Even by reducing the time
resolution to 10 ms as well and changing the frequency steps to 0.05 MHz, the measurement
duration remains large, at roughly 50 years. Unless an optimization approach like ours is
implemented, only physical arguments and a certain degree of parameter separability can be
used to find useful working points for ramp parameters for this and similar problems, leading
to a labor-intensive manual search.
For the 2d measurement, the algorithm finds values of 3 MHz and 0.65 MHz for the RF
- ramp frequencies. Although we cannot make a quantitative statement about the quality
of this solution without knowledge of the parameter space, these values are similar to the
cooling ramp values which have been successfully used before GA - optimization as well as
the corresponding phase space densities. Note that the algorithm has not fully converged for
the intermediate RF value; a competing subpopulation with 2 MHz RF - value is still present
in the last generation.
For the 4d measurement, the algorithm also finds an intermediate value of 3 MHz, but a lower
end frequency of 0.47 MHz. Objective function values, especially those of the best performing
states within the run, are only slightly inferior to those in the last generations of the 2d
measurement. It is interesting to see however that performance increases towards the end
of the run, at the same time when the competing subpopulation for short times of duration 1
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(d) 2d optimization run.
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(e) 4d optimization run.

Fig. 8. Results of the RF - cooling ramp optimization. The parameters in (a) and (b) are
frequencies of the RF field during the ramp, given in MHz. In (c), parameters are times in
milliseconds. The parameters represented in (b) and (c) belong to states consisting of two
times and two frequencies, but are presented in distinct graphs due to the different unit
scales. (e), (f). Mean fitness per generation for the 2d and 4d optimization runs.

(green points) vanishes and duration 2 (blue points) begins to develop a trend towards bigger
values. A noteworthy point, however, is that overall ramp duration for these results with 3.7
seconds is significantly shorter than the preset 4.5 seconds, with only marginally worse phase
space densities.
In summary the algorithm has found useful working points in both optimization runs,
reproducing optimal values found with the help of other experiments in one case, and
significantly shortening the cooling ramp with only a small tradeoff in phase space density
in the second measurement.

5. Computer experiments

As stated above, algorithm runtime as part of the hardware feedback loop is on the order of a
few hours due to the duration of an experimental sequence of 35 seconds. As a consequence,
in order to characterize the algorithms performance and for parameter tuning, computer
experiments on several test problems have been carried out, with runtimes of seconds to
minutes and full knowledge of the parameter space.
The tests go from simple, unimodal problems in two dimensions to complicated,
multidimensional functions commonly used as test functions for stochastic optimization
problems. In each case, the algorithms task was to find the global maximum or minimum
of the respective test function.
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Representative for all optimization problems, figure 9 illustrates the algorithm’s walk through
the parameter space of the 2d Rastrigin function (see section 5.2) through a subset of stages
out of a total of 48 generations.
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Fig. 9. Population in parameter space in generations 1, 32 and 48.

5.1 Unimodal test functions

A first, very simple function is

f (xi) =
n

∑
i=1

x2
i (25)

which is known as De Jong’s first function as benchmark for optimization algorithms. It
is continuous, convex and unimodal. As second problem, we used a bivariate normal
distribution, creating a peaked structure in an otherwise flat parameter space as depicted in
figure 10. This problem is slightly more difficult since the algorithm can find an exploitable
gradient only in the vicinity of the optimum.

(a) Peaked 2d distribution (b) De Jong F1 - Function

Fig. 10. 2d representations of the used unimodal test functions.

5.1.1 Results

In this benchmark, the algorithm was supposed to minimize De Jong’s function in three and
five dimensions as well as the bivariate Gaussian distribution. Each task was repeated 50
times in order to gain statistics about the convergence behavior.
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As an example, the first two panels in figure 11 show the properties of one typical optimization
run.
In the different fitness graphs, the value of the objective function is plotted as fitness measure.
With exception of the bivariate normal distribution, all functions had to be minimized, thus
smaller values correspond to better states.
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Fig. 11. Results for De Jong’s function in three dimensions. Panel 1 contains the mean fitness
of each generation within one typical optimization run. Error bars show the standard
deviation, corresponding to the spread of different states within the generation, with the
fitness of each generation’s best state depicted in the inset. The evolution of states is given in
Panel 3. Different colors correspond to different variables, i. e. components of the state
vectors. Panel 3 contain the fitness of each generation averaged over the total number of 50
runs and the fitness of each generation’s best state averaged over the total number of 50 runs
in the inset. The spread in expected convergence time is related to the fitness variance
expressed through the bars.

The results demonstrate the algorithm’s ability to converge towards the global optimum
located at the center of the parameter space on a scale of 20 to 30 generations, while finding
the optimum takes 10 - 20 generations.
Figure 12 summarizes convergence behavior for the same function, but in 5 dimensions. For
the data presented in figure 12 a), the population size was set to 20 states per generation, as
opposed to 30 states per generation for b). The additional degrees of freedom cause bigger
fitness spreads and hence slower convergence for both settings, although the effect is not
as pronounced for the runs with larger population size. The results underline the tradeoff
between population size and convergence time in terms of generations one is confronted with
in large parameter spaces.
To conclude, the results on the bivariate Gaussian distribution are presented in figure 12 c).
For this problem, the algorithm had to find a sharp maximum with an objective function value
of 3.5. The peaked structure also represents itself in a fitness spread, since even states close to
the minimum achieve a significantly lower objective function value than maximally possible.

5.2 Multimodal test functions

The first multimodal benchmark used is known as Rastrigin’s function:

f (xi) = 10 · n +
n

∑
i=1

[

x2
i − 10 · cos (2πxi)

]

. (26)

Both this form and the 2d representation given in figure 13 show that this is an overall convex
function with a sinusoidal modulation, creating a large number of local optima.
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Fig. 12. Results for De Jong’s function in five dimensions. Figures (a) and (b) represent results
gained with a population size of 20 states and 30 states respectively. (c) Results for the
optimization of a 2d bivariate Gaussian function.

As a second benchmark, we use the function

f (xi) =
n

∑
i=1

[

−xi · sin

(

√

|xi|
)]

, (27)

also known as Schwefel’s function. It does not feature as many local extrema as Rastrigin’s
function within the search space under consideration, however it is a deceptive function in that
the global minimum is distant in parameter space from the next best local minima.

(a) Rastrigin’s function (b) Schwefel’s F6 function

Fig. 13. 2d representations of the used multimodal test functions.

5.2.1 Results

Results on the 2d and 5d Rastrigin function are summarized in figure 14. While the algorithm
can locate the global optimum of this complicated test problem in 2d, for the 5d problem
with a population size of 20 states in most of the cases the optimization gets stuck in a local
minimum. Raising population size to 50 states shows a clear improvement. Evolution of the
fitness per generation as well as each generation’s best state’s fitness for these cases are shown
in figure 14 a, b and c and the insets, respectively.
The last test problem presented here is optimization of Schwefel’s function. The global
minimum has a function value of −418 · d, where d represents the number of dimensions.
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Fig. 14. Convergence behavior for Rastrigin’s function (see text).

Similarly to the case of Rastrigin’s function, a population of 20 states per generation still
locates the global minimum in 60 % of runs for 2d (figure 15 a), while in five dimensions
(figure 15 b), the algorithm usually converges towards a local optimum.
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Fig. 15. Evolution of the fitness per generation as well as each generation’s best state’s fitness
in 2d (a), and 5d (b).

In summary, the computer experiments suggest that for moderately complex optimization
problems, our simple RCGA can perform optimization tasks even with comparatively small
population sizes. In complicated problems with many local optima, bigger population sizes
cannot be avoided.

6. Summary and outlook

In this chapter, we have described the implementation of shot-to-shot real-time stochastic
optimization of a physics experiment. Our approach is broadly applicable and can be
implemented for all computer-controlled parameters of any given physical apparatus. As
with most implementations of GA optimization, the approach is particularly useful for
multidimensional parameter spaces with multiple local optima and little or no quantitative
predictions of their coordinates. This is a situation which arises often in atomic physics as
well as in other branches of experimental research, and is usually tackled by making use of
intuition, physical arguments and a certain degree of parameter separability to restrict the
initial parameter space. This approach often amounts to a human-controlled, semi-stochastic
search which is usually time-consuming and has no guarantee of yielding a global optimum.
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Using the genetic-algorithm approach, we have seen rapid convergence to optimal parameters
in 2- and 4-dimensional parameter spaces, and that the approach is robust even in the presence
of local optima and experimental noise. We envisage a number of possible augmentations
for future implementations. Among these are the weighting of the fitness of a population
member according to its experimental uncertainty, and the inclusion of qualitative physical
predictions in some implementations. These predictions can then be progressively quantified
with each generation and used to steer mutations to speed up the search convergence. In
future implementations, this method may also be extended to perform "optimal experimental
control" that automatically finds the best experimental sequence to produce a defined target
quantum state. In conclusion, optimization using a genetic algorithm can be an efficient tool
to improve the performance of a ‘real-life’ apparatus.
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