3,903 research outputs found

    Collapse of the random phase approximation: examples and counter-examples from the shell model

    Full text link
    The Hartree-Fock approximation to the many-fermion problem can break exact symmetries, and in some cases by changing a parameter in the interaction one can drive the Hartree-Fock minimum from a symmetry-breaking state to a symmetry-conserving state (also referred to as a ``phase transition'' in the literature). The order of the transition is important when one applies the random phase approximation (RPA) to the of the Hartree-Fock wavefunction: if first order, RPA is stable through the transition, but if second-order, then the RPA amplitudes become large and lead to unphysical results. The latter is known as ``collapse'' of the RPA. While the difference between first- and second-order transitions in the RPA was first pointed out by Thouless, we present for the first time non-trivial examples of both first- and second-order transitions in a uniform model, the interacting shell-model, where we can compare to exact numerical results.Comment: 8 pages, 7 figure

    Reduction of the spin-orbit potential in light drip-line nuclei

    Get PDF
    The isospin dependence of the spin-orbit interaction in light neutron rich nuclei is investigated in the framework of relativistic mean field theory. The magnitude of the spin-orbit potential is considerably reduced in drip line nuclei, resulting in smaller energy splittings between spin-orbit partners. The effect does not depend on the parametrization of the effective Lagrangian. The results are compared with corresponding calculations in the non-relativistic Skyrme model.Comment: 8 Pages, LateX, 4 P.S. Figures, submit. Phys. Lett.

    Surface-peaked effective mass in the nuclear energy density functional and its influence on single-particle spectra

    Full text link
    Calculations for infinite nuclear matter with realistic nucleon-nucleon interactions suggest that the isoscalar effective mass of a nucleon at the saturation density, m*/m, equals 0.8 +/- 0.1. This result is at variance with empirical data on the level density in finite nuclei, which are consistent with m*/m ~ 1. Ma and Wambach suggested that these two contradicting results may be reconciled within a single theoretical framework by assuming a radial-dependent effective mass, peaked at the nuclear surface. The aim of this exploratory work is to investigate this idea within the density functional theory by using a Skyrme-type local functional enriched with new terms, τ(ρ)2\tau (\mathbf{\nabla}\rho)^2 and τdρdr\tau\frac{d\rho}{dr}, where τ\tau and ρ\rho denote the kinetic and particle densities, respectively. We show that each of these terms can give rise to a surface peak in the effective mass, but of a limited height. We investigate the influence of the radial profile of the effective mass on the spin-orbit splittings and centroids. In particular, we demonstrate that the τdρdr\tau \frac{d\rho}{dr} term quenches the 1f5/2-1f7/2 splitting in 40Ca, which is strongly overestimated within conventional Skyrme parametrizations.Comment: 8 pages, 8 figures, submitted to Phys. Rev.

    Monopole giant resonances and nuclear compressibility in relativistic mean field theory

    Full text link
    Isoscalar and isovector monopole oscillations that correspond to giant resonances in spherical nuclei are described in the framework of time-dependent relativistic mean-field (RMF) theory. Excitation energies and the structure of eigenmodes are determined from a Fourier analysis of dynamical monopole moments and densities. The generator coordinate method, with generating functions that are solutions of constrained RMF calculations, is also used to calculate excitation energies and transition densities of giant monopole states. Calculations are performed with effective interactions which differ in their prediction of the nuclear matter compression modulus K_nm. Both time-dependent and constrained RMF results indicate that empirical GMR energies are best reproduced by an effective force with K_nm \approx 270 MeV.Comment: 30 pages of LaTeX, 18 PS-figure

    Manual of Criminal Law and Procedure

    Get PDF
    Intended to aid to Alaska law enforcement officers in the performance of their duties in the field, this manual was designed to provide brief, quick access to major points of substantive and procedural criminal law. The manual contained discussion and procedural guidelines for investigatory stops, identification procedures including line-ups, arrest, search and seizure, interrogation, as well as discussion of justification for the use of nondeadly and deadly force whether by peace officers or civilians, culpability, entrapment, trial preparation, and media relations. The section on substantive criminal law deals with a selection of crimes most likely to be encountered by "street" officers as defined with the recently enacted Revised Alaska Criminal Code (effective January 1, 1980), desribing elements of each crime, investigative hints, and differences with previous provisions of the criminal code, where relevant.Alaska Department of Law Grant No. 78-A-014Introduction / Criminal Procedures / Substantive Criminal Law / Justification / Culpability / Entrapment / Trial Preparation / Media Relations / Appendice

    Relativistic Hartree-Bogoliubov theory in coordinate space: finite element solution for a nuclear system with spherical symmetry

    Full text link
    A C++ code for the solution of the relativistic Hartree-Bogoliubov theory in coordinate space is presented. The theory describes a nucleus as a relativistic system of baryons and mesons. The RHB model is applied in the self-consistent mean-field approximation to the description of ground state properties of spherical nuclei. Finite range interactions are included to describe pairing correlations and the coupling to particle continuum states. Finite element methods are used in the coordinate space discretization of the coupled system of Dirac-Hartree-Bogoliubov integro-differential eigenvalue equations, and Klein-Gordon equations for the meson fields. The bisection method is used in the solution of the resulting generalized algebraic eigenvalue problem, and the biconjugate gradient method for the systems of linear and nonlinear algebraic equations, respectively.Comment: PostScript, 32 pages, to be published in Computer Physics Communictions (1997

    On the Thermodynamic Limit of the Lipkin Model

    Full text link
    The thermodynamic limit of the Lipkin model is investigated. While the limit turns out to be rather elusive, the analysis gives strong indications that the limit yields two analytically dissociated operators, one for the normal and one for the deformed phase. While the Lipkin Hamiltonian is hermitian and has a second order phase transition in finite dimensions (finite particle number), both properties seem to be destroyed in the thermodynamic limit.Comment: 9 pages, 3 figures to appear in JPhys
    corecore