3,029 research outputs found

    Model-Independent Distance Measurements from Gamma-Ray Bursts and Constraints on Dark Energy

    Full text link
    Gamma-Ray Bursts (GRB) are the most energetic events in the Universe, and provide a complementary probe of dark energy by allowing the measurement of cosmic expansion history that extends to redshifts greater than 6. Unlike Type Ia supernovae (SNe Ia), GRBs must be calibrated for each cosmological model considered, because of the lack of a nearby sample of GRBs for model-independent calibration. For a flat Universe with a cosmological constant, we find Omega_m=0.25^{+0.12}_{-0.11} from 69 GRBs alone. We show that the current GRB data can be summarized by a set of model-independent distance measurements, with negligible loss of information. We constrain a dark energy equation of state linear in the cosmic scale factor using these distance measurements from GRBs, together with the "Union" compilation of SNe Ia, WMAP five year observations, and the SDSS baryon acoustic oscillation scale measurement. We find that a cosmological constant is consistent with current data at 68% confidence level for a flat Universe. Our results provide a simple and robust method to incorporate GRB data in a joint analysis of cosmological data to constrain dark energy.Comment: 8 pages, 5 color figures. Version expanded and revised for clarification, and typo in Eqs.(3)(4)(12) corrected. PRD, in pres

    Dark Energy Accretion onto a Black Hole in an Expanding Universe

    Full text link
    By using the solution describing a black hole embedded in the FLRW universe, we obtain the evolving equation of the black hole mass expressed in terms of the cosmological parameters. The evolving equation indicates that in the phantom dark energy universe the black hole mass becomes zero before the Big Rip is reached.Comment: 7 pages, no figures, errors is correcte

    Type Ia Supernova Light Curve Inference: Hierarchical Bayesian Analysis in the Near Infrared

    Full text link
    We present a comprehensive statistical analysis of the properties of Type Ia SN light curves in the near infrared using recent data from PAIRITEL and the literature. We construct a hierarchical Bayesian framework, incorporating several uncertainties including photometric error, peculiar velocities, dust extinction and intrinsic variations, for coherent statistical inference. SN Ia light curve inferences are drawn from the global posterior probability of parameters describing both individual supernovae and the population conditioned on the entire SN Ia NIR dataset. The logical structure of the hierarchical model is represented by a directed acyclic graph. Fully Bayesian analysis of the model and data is enabled by an efficient MCMC algorithm exploiting the conditional structure using Gibbs sampling. We apply this framework to the JHK_s SN Ia light curve data. A new light curve model captures the observed J-band light curve shape variations. The intrinsic variances in peak absolute magnitudes are: sigma(M_J) = 0.17 +/- 0.03, sigma(M_H) = 0.11 +/- 0.03, and sigma(M_Ks) = 0.19 +/- 0.04. We describe the first quantitative evidence for correlations between the NIR absolute magnitudes and J-band light curve shapes, and demonstrate their utility for distance estimation. The average residual in the Hubble diagram for the training set SN at cz > 2000 km/s is 0.10 mag. The new application of bootstrap cross-validation to SN Ia light curve inference tests the sensitivity of the model fit to the finite sample and estimates the prediction error at 0.15 mag. These results demonstrate that SN Ia NIR light curves are as effective as optical light curves, and, because they are less vulnerable to dust absorption, they have great potential as precise and accurate cosmological distance indicators.Comment: 24 pages, 15 figures, 4 tables. Accepted for publication in ApJ. Corrected typo, added references, minor edit

    Mediators of leukocyte yctivation play a role in disseminated intravascular coagulation during orthotopic liver transplantation

    Get PDF
    Leukocytes play an important role in the development of disseminated intravascular coagulation (DIC). In the reperfusion phase of OLT a DIC-like situation has been described and has been held responsible for the high blood loss during this phase. We investigated the role of leukocytes in the pathogenesis of DIC in OLT by measuring the leukocytic mediators released upon activation (cathepsin B, elastase, TNF, neopterin) and the levels of thrombin-antithrombin III (TAT) complexes, seen as markers of prothrombin activation. Arterial blood samples were taken at 10 different time points during and after OLT. Samples were also taken of the perfusate released from the liver graft vein during the flushing procedure before the reperfusion phase. Aprotinin was given as a continuous infusion (0.2-0.4 Mill. KlU/hr) and its plasma levels were determined. Significantly elevated levels of neopterin (15-fold; P<0.01), cathepsin B (440-fold; P<0.01) in the perfusate, as compared with the systemic circulation, as well as their significant increases in the early reperfusion phase suggested that they were released by the graft liver. This was paralleled by elevated levels of elastase (1.3-fold, P<0.05), TNF (1.5-fold, P=NS), and TAT complexes (1.4-fold; P<0.1) in the perfusate. Significant correlations could be identified between the parameters of leukocyte activation and TAT complexes, whereas no correlation was observed between any of the parameters investigated and the aprotinin levels. Our results strongly indicate a release of leukocytic mediators from the graft liver during its reperfusion which seems to be related to the parallely increased prothrombin activation. No correlation could be seen between levels of aprotinin and levels of leukocytic mediators

    A Redetermination of the Hubble Constant with the Hubble Space Telescope from a Differential Distance Ladder

    Get PDF
    We report observations of 240 Cepheid variables obtained with the Near Infrared Camera (NICMOS) through the F160W filter on the Hubble Space Telescope (HST). The Cepheids are distributed across six recent hosts of Type Ia supernovae (SNe Ia) and the "maser galaxy" NGC 4258, allowing us to directly calibrate the peak luminosities of the SNe Ia from the precise, geometric distance measurements provided by the masers. New features of our measurement include the use of the same instrument for all Cepheid measurements across the distance ladder and homogeneity of the Cepheid periods and metallicities thus necessitating only a differential measurement of Cepheid fluxes and reducing the largest systematic uncertainties in the determination of the fiducial SN Ia luminosity. The NICMOS measurements reduce differential extinction in the host galaxies by a factor of 5 over past optical data. Combined with an expanded of 240 SNe Ia at z<0.1 which define their magnitude-redshift relation, we find H_0=74.2 +/-3.6, a 4.8% uncertainty including both statistical and systematic errors. We show that the factor of 2.2 improvement in the precision of H_0 is a significant aid to the determination of the equation-of-state of dark energy, w = P/(rho c^2). Combined with the WMAP 5-year measurement of Omega_M h^2, we find w= -1.12 +/- 0.12 independent of high-redshift SNe Ia or baryon acoustic oscillations (BAO). This result is also consistent with analyses based on the combination of high-z SNe Ia and BAO. The constraints on w(z) now with high-z SNe Ia and BAO are consistent with a cosmological constant and improved by a factor of 3 from the refinement in H_0 alone. We show future improvements in H_0 are likely and will further contribute to multi-technique studies of dark energy.Comment: 60 pages, 15 figures Accepted for Publication, ApJ. This is the second of two papers reporting results from a program to determine the Hubble constant to 5% precision from a refurbished distance ladder based on extensive use of differential measurement

    Possible role of extracellularly released phagocytic proteinases in the coagulation disorder during liver transplantation

    Get PDF
    Orthotopic liver transplantation is frequently associated with a complex coagulation disorder, influencing the outcome of the procedure. In this respect, disseminated intravascular coagulation (DIC) had been suggested to be of causative importance for bleeding complications after reperfusion of the liver graft. In 10 consecutive patients undergoing orthotopic liver transplantations, we studied the occurrence of two phagocyte proteinases of different origin in the graft liver perfus-ate and in systemic blood during the operation, as well as their effects on hemostasis. As compared with plasma samples taken at the end of the anhepatic phase, highly significant increases of cathepsin B and thrombin-anti-thrombin III complexes (TAT), as well as highly significant decreases in antithrombin III, protein C, and C1-inhibitor were observed in graft liver perfusate. Von Willebrand factor and fibrinogen were slightly decreased, whereas the elastase-alpha1 proteinase inhibitor complexes (EPI) were elevated. In plasma the activity of cathepsin B remained unchanged during the prereperfusion phases, but immediately after revascularization of the graft this cysteine proteinase increased. The EPI showed a gradual increase in plasma during the preanhepatic and anhepatic phases but a more pronounced increase in the reperfusion phase. In parallel with the rise in these two proteinases TAT increased and the activities of antithrombin III and C1-inhibitor in plasma decreased after reperfusion. At 12 hr after revascularization plasma levels of TAT, antithrombin III, and C1-inhibitor had returned to the prereperfusion ranges, whereas cathepsin B and EPI were significantly above the baseline levels. These observations are consistent with the hypothesis that extracellularly released lysosomal proteinases may play a role in the development of a DIC-like constellation, including thrombin formation after revascularization of the liver graft. For the first time we could prove the occurrence of phagocyte proteinases in graft liver perfusate and evaluate the importance of these proteinases for the understanding of the pathophysiology leading to bleeding complications in patients undergoing orthotopic liver transplantation

    Why we need to see the dark matter to understand the dark energy

    Full text link
    The cosmological concordance model contains two separate constituents which interact only gravitationally with themselves and everything else, the dark matter and the dark energy. In the standard dark energy models, the dark matter makes up some 20% of the total energy budget today, while the dark energy is responsible for about 75%. Here we show that these numbers are only robust for specific dark energy models and that in general we cannot measure the abundance of the dark constituents separately without making strong assumptions.Comment: 4 pages, to be published in the Journal of Physics: Conference Series as a contribution to the 2007 Europhysics Conference on High Energy Physic
    • …
    corecore