524 research outputs found

    Fluctuating lattice Boltzmann

    Full text link
    The lattice Boltzmann algorithm efficiently simulates the Navier Stokes equation of isothermal fluid flow, but ignores thermal fluctuations of the fluid, important in mesoscopic flows. We show how to adapt the algorithm to include noise, satisfying a fluctuation-dissipation theorem (FDT) directly at lattice level: this gives correct fluctuations for mass and momentum densities, and for stresses, at all wavevectors kk. Unlike previous work, which recovers FDT only as k→0k\to 0, our algorithm offers full statistical mechanical consistency in mesoscale simulations of, e.g., fluctuating colloidal hydrodynamics.Comment: 7 pages, 3 figures, to appear in Europhysics Letter

    Hydrodynamic interactions in colloidal ferrofluids: A lattice Boltzmann study

    Get PDF
    We use lattice Boltzmann simulations, in conjunction with Ewald summation methods, to investigate the role of hydrodynamic interactions in colloidal suspensions of dipolar particles, such as ferrofluids. Our work addresses volume fractions ϕ\phi of up to 0.20 and dimensionless dipolar interaction parameters λ\lambda of up to 8. We compare quantitatively with Brownian dynamics simulations, in which many-body hydrodynamic interactions are absent. Monte Carlo data are also used to check the accuracy of static properties measured with the lattice Boltzmann technique. At equilibrium, hydrodynamic interactions slow down both the long-time and the short-time decays of the intermediate scattering function S(q,t)S(q,t), for wavevectors close to the peak of the static structure factor S(q)S(q), by a factor of roughly two. The long-time slowing is diminished at high interaction strengths whereas the short-time slowing (quantified via the hydrodynamic factor H(q)H(q)) is less affected by the dipolar interactions, despite their strong effect on the pair distribution function arising from cluster formation. Cluster formation is also studied in transient data following a quench from λ=0\lambda = 0; hydrodynamic interactions slow the formation rate, again by a factor of roughly two

    Patterns of sick-leave and health outcomes in injured workers with back pain

    Get PDF
    Little is known about the sick-leave experiences of workers who make a workers’ compensation claim for back pain. Our objective is to describe the 1-year patterns of sick-leave and the health outcomes of a cohort of workers who make a workers’ compensation claim for back pain. We studied a cohort of 1,831 workers from five large US firms who made incident workers’ compensation claims for back pain between January 1, 1999 and June 30, 2002. Injured workers were interviewed 1 month (n = 1,321), 6 months (n = 810) and 1 year (n = 462) following the onset of their pain. We described the course of back pain using four patterns of sick-leave: (1) no sick-leave, (2) returned to worked and stayed, (3) multiple episodes of sick-leave and (4) not yet returned to work. We described the health outcomes as back and/or leg pain intensity, functional limitations and health-related quality of life. We analyzed data from participants who completed all follow-up interviews (n = 457) to compute the probabilities of transition between patterns of sick-leave. A significant proportion of workers experienced multiple episodes of sick-leave (30.2%; 95% CI 25.0–35.1) during the 1-year follow-up. The proportion of workers who did not report sick-leave declined from 42.4% (95% CI 39.0–46.1) at 1 month to 33.6% (28.0–38.7) at 1 year. One year after the injury, 2.9% (1.6–4.9) of workers had not yet returned to work. Workers who did not report sick-leave and those who returned and stayed at work reported better health outcomes than workers who experienced multiple episodes of sick-leave or workers who had not returned to work. Almost a third of workers with an incident episode of back pain experience recurrent spells of work absenteeism during the following year. Our data suggest that stable patterns of sick-leave are associated with better health

    High anthropogenic carbon content in the eastern Mediterranean

    Get PDF
    This work presents data of dichlorodifluoromethane (CFC-12), dissolved inorganic carbon and total alkalinity from a cruise to the Mediterranean Sea during October–November 2001, with the main focus on the CFC-12 data and on the eastern basin. Using the transit time distribution method, the anthropogenic carbon concentrations in the basin were estimated. Results were cross-checked with a back-calculation technique. The entire water column of the Mediterranean Sea contains anthropogenic CO2, with minimum concentrations of 20.5 ÎŒmol kg−1 (error range: 16.9–27.1 ÎŒmol kg−1) in the most eastern part of the basin at intermediate depths, where the waters' mean age is >130 yr. Column inventories of up to 154 mol m−2 (132–179 mol m−2) are found and a total inventory of 1.7 Pg (1.3–2.1 Pg) of anthropogenic carbon in the Mediterranean Sea was estimated. There is a net flux of 38 Tg yr−1 (30–47 Tg yr−1) of dissolved inorganic carbon through the Strait of Gibraltar into the Atlantic Ocean and an opposite net flux of 3.5 Tg yr−1 (−1.8–9.2 Tg yr−1) of anthropogenic carbon into the Mediterranean Sea

    Applications of yeast flocculation in biotechnological processes

    Get PDF
    A review on the main aspects associated with yeast flocculation and its application in biotechnological processes is presented. This subject is addressed following three main aspects – the basics of yeast flocculation, the development of “new” flocculating yeast strains and bioreactor development. In what concerns the basics of yeast flocculation, the state of the art on the most relevant aspects of mechanism, physiology and genetics of yeast flocculation is reported. The construction of flocculating yeast strains includes not only the recombinant constitutive flocculent brewer’s yeast, but also recombinant flocculent yeast for lactose metabolisation and ethanol production. Furthermore, recent work on the heterologous ÎČ-galactosidase production using a recombinant flocculent Saccharomyces cerevisiae is considered. As bioreactors using flocculating yeast cells have particular properties, mainly associated with a high solid phase hold-up, a section dedicated to its operation is presented. Aspects such as bioreactor productivity and culture stability as well as bioreactor hydrodynamics and mass transfer properties of flocculating cell cultures are considered. Finally, the paper concludes describing some of the applications of high cell density flocculation bioreactors and discussing potential new uses of these systems.Fundação para a CiĂȘncia e a Tecnologia (FCT) – PRAXIS XXI - BD11306/97

    Responsiveness and minimal clinically important difference for pain and disability instruments in low back pain patients

    Get PDF
    BACKGROUND: The choice of an evaluative instrument has been hampered by the lack of head-to-head comparisons of responsiveness and the minimal clinically important difference (MCID) in subpopulations of low back pain (LBP). The objective of this study was to concurrently compare responsiveness and MCID for commonly used pain scales and functional instruments in four subpopulations of LBP patients. METHODS: The Danish versions of the Oswestry Disability Index (ODI), the 23-item Roland Morris Disability Questionnaire (RMQ), the physical function and bodily pain subscales of the SF36, the Low Back Pain Rating Scale (LBPRS) and a numerical rating scale for pain (0–10) were completed by 191 patients from the primary and secondary sectors of the Danish health care system. Clinical change was estimated using a 7-point transition question and a numeric rating scale for importance. Responsiveness was operationalised using standardardised response mean (SRM), area under the receiver operating characteristic curve (ROC), and cut-point analysis. Subpopulation analyses were carried out on primary and secondary sector patients with LBP only or leg pain +/- LBP. RESULTS: RMQ was the most responsive instrument in primary and secondary sector patients with LBP only (SRM = 0.5–1.4; ROC = 0.75–0.94) whereas ODI and RMQ showed almost similar responsiveness in primary and secondary sector patients with leg pain (ODI: SRM = 0.4–0.9; ROC = 0.76–0.89; RMQ: SRM = 0.3–0.9; ROC = 0.72–0.88). In improved patients, the RMQ was more responsive in primary and secondary sector patients and LBP only patients (SRM = 1.3–1.7) while the RMQ and ODI were equally responsive in leg pain patients (SRM = 1.3 and 1.2 respectively). All pain measures demonstrated almost equal responsiveness. The MCID increased with increasing baseline score in primary sector and LBP only patients but was only marginally affected by patient entry point and pain location. The MCID of the percentage change score remained constant for the ODI (51%) and RMQ (38%) specifically and differed in the subpopulations. CONCLUSION: RMQ is suitable for measuring change in LBP only patients and both ODI and RMQ are suitable for leg pain patients irrespectively of patient entry point. The MCID is baseline score dependent but only in certain subpopulations. Relative change measured using the ODI and RMQ was not affected by baseline score when patients quantified an important improvement

    Does parallel item content on WOMAC's Pain and Function Subscales limit its ability to detect change in functional status?

    Get PDF
    BACKGROUND: Although the Western Ontario and McMaster University Osteoarthritis Index (WOMAC) is considered the leading outcome measure for patients with osteoarthritis of the lower extremity, recent work has challenged its factorial validity and the physical function subscale's ability to detect valid change when pain and function display different profiles of change. This study examined the etiology of the WOMAC's physical function subscale's limited ability to detect change in the presence of discordant changes for pain and function. We hypothesized that the duplication of some items on the WOMAC's pain and function subscales contributed to this shortcoming. METHODS: Two eight-item physical function scales were abstracted from the WOMAC's 17-item physical function subscale: one contained activities and themes that were duplicated on the pain subscale (SIMILAR-8); the other version avoided overlapping activities (DISSIMILAR-8). Factorial validity of the shortened measures was assessed on 310 patients awaiting hip or knee arthroplasty. The shortened measures' abilities to detect change were examined on a sample of 104 patients following primary hip or knee arthroplasty. The WOMAC and three performance measures that included activity specific pain assessments – 40 m walk test, stair test, and timed-up-and-go test – were administered preoperatively, within 16 days of hip or knee arthroplasty, and at an interval of greater than 20 days following the first post-surgical assessment. Standardized response means were used to quantify change. RESULTS: The SIMILAR-8 did not demonstrate factorial validity; however, the factorial structure of the DISSIMILAR-8 was supported. The time to complete the performance measures more than doubled between the preoperative and first postoperative assessments supporting the theory that lower extremity functional status diminished over this interval. The DISSIMILAR-8 detected this deterioration in functional status; however, no significant change was noted for the SIMILAR-8. The WOMAC pain scale demonstrated a slight reduction in pain and the performance specific pain measures did not reflect a change in pain. All measures showed substantial improvement over the second assessment interval. CONCLUSIONS: These findings support the hypothesis that activity overlap on the pain and function subscales plays a causal role in limiting the WOMAC physical function subscale's ability to detect change

    Minimal changes in health status questionnaires: distinction between minimally detectable change and minimally important change

    Get PDF
    Changes in scores on health status questionnaires are difficult to interpret. Several methods to determine minimally important changes (MICs) have been proposed which can broadly be divided in distribution-based and anchor-based methods. Comparisons of these methods have led to insight into essential differences between these approaches. Some authors have tried to come to a uniform measure for the MIC, such as 0.5 standard deviation and the value of one standard error of measurement (SEM). Others have emphasized the diversity of MIC values, depending on the type of anchor, the definition of minimal importance on the anchor, and characteristics of the disease under study. A closer look makes clear that some distribution-based methods have been merely focused on minimally detectable changes. For assessing minimally important changes, anchor-based methods are preferred, as they include a definition of what is minimally important. Acknowledging the distinction between minimally detectable and minimally important changes is useful, not only to avoid confusion among MIC methods, but also to gain information on two important benchmarks on the scale of a health status measurement instrument. Appreciating the distinction, it becomes possible to judge whether the minimally detectable change of a measurement instrument is sufficiently small to detect minimally important changes

    Islands of relationality and resilience: the shifting stakes of the Anthropocene

    Get PDF
    In recent decades island studies scholars have done much to disrupt static notions of the island form, increasingly foregrounding how islands form part of complex networks of relations, assemblages and flows. In this paper, we shift the terms of debate more explicitly to relationality in the Anthropocene. We consider the implications and challenges that a wider set of debates, particularly surrounding island ‘resilience’, concerning the Anthropocene in the social sciences and humanities pose for island studies
    • 

    corecore