3,548 research outputs found
Vacancy-Induced Low-Energy Density of States in the Kitaev Spin Liquid
The Kitaev honeycomb model has attracted significant attention due to its exactly solvable spin-liquid ground state with fractionalized Majorana excitations and its possible materialization in magnetic Mott insulators with strong spin-orbit couplings. Recently, the 5d-electron compound H3LiIr2O6 has shown to be a strong candidate for Kitaev physics considering the absence of any signs of a long-range ordered magnetic state. In this work, we demonstrate that a finite density of random vacancies in the Kitaev model gives rise to a striking pileup of low-energy Majorana eigenmodes and reproduces the apparent power-law upturn in the specific heat measurements of H3LiIr2O6. Physically, the vacancies can originate from various sources such as missing magnetic moments or the presence of nonmagnetic impurities (true vacancies), or from local weak couplings of magnetic moments due to strong but rare bond randomness (quasivacancies). We show numerically that the vacancy effect is readily detectable even at low vacancy concentrations and that it is not very sensitive either to the nature of vacancies or to different flux backgrounds. We also study the response of the site-diluted Kitaev spin liquid to the three-spin interaction term, which breaks time-reversal symmetry and imitates an external magnetic field. We propose a field-induced flux-sector transition where the ground state becomes flux-free for larger fields, resulting in a clear suppression of the low-temperature specific heat. Finally, we discuss the effect of dangling Majorana fermions in the case of true vacancies and show that their coupling to an applied magnetic field via the Zeeman interaction can also account for the scaling behavior in the high-field limit observed in H3LiIr2O6
NV centres by vacancies trapping in irradiated diamond: experiments and modelling
Advances in applications of nitrogen-vacancy (NV) spin centres in diamond for sensing and quantum metrology depend critically on the NV fabrication methods. One such technique combines epitaxial diamond growth and electron or ion irradiation (He, C, etc), where NVs are activated by vacancy trapping at the nitrogen donor atoms upon thermal diffusion. In this work we study the efficiency of such method by analyzing NV depth profiles created by 340 keV and also 4 keV He irradiation in high purity CVD and HPHT diamond crystals and subjected to sequent annealing at 950 ◦C and 1200 ◦C temperatures. This analysis is coupled with the measurement of NV density in the bulk of CVD diamonds with nitrogen doping at low-ppb and low-ppm levels, exposed to MeV electrons in a wide range of the doses. For data analysis we developed an atomistic model based on probabilistic atomic jumps in a crystal lattice, which considers competitive trapping between di-(V2) or multi-vacancy defects compared to that of NVs. The efficiency of NV formation was defined as a ratio of the corresponding capture cross sections: σNV vs. σV2. Applying this model to the experimental data, the σNV/σV2 ratio was estimated about 0.1–0.5, where the activation energy of vacancy diffusion of about 1.7 eV was evaluated by 3D localization of individual NVs in depth profiles in a confocal microscope and sampling their spin coherence properties (T2). In addition, we noted two subsidiary effects also discussed here: (i) reduction of NV density within the stopping range of the implanted He atoms after 1200◦ annealing and, (ii) partial suppression of NVs at near-surface areas visible only at low-dose electron exposures. The results of this study could be helpful to optimize the NV fabrication process reducing the density of ‘collateral’ lattice damage
An Instrument for Lunar Surface Chemical Analysis
Instrument for lunar surface chemical analysis that uses interactions with matter of monoenergetic alpha particle
TCF1(+) hepatitis C virus-specific CD8(+) T cells are maintained after cessation of chronic antigen stimulation.
Differentiation and fate of virus-specific CD8(+) T cells after cessation of chronic antigen stimulation is unclear. Here we show that a TCF1(+)CD127(+)PD1(+) hepatitis C virus (HCV)-specific CD8(+) T-cell subset exists in chronically infected patients with phenotypic features of T-cell exhaustion and memory, both before and after treatment with direct acting antiviral (DAA) agents. This subset is maintained during, and for a long duration after, HCV elimination. After antigen re-challenge the less differentiated TCF1(+)CD127(+)PD1(+) population expands, which is accompanied by emergence of terminally exhausted TCF1-CD127-PD1(hi) HCV-specific CD8(+) T cells. These results suggest the TCF1(+)CD127(+)PD1(+) HCV-specific CD8(+) T-cell subset has memory-like characteristics, including antigen-independent survival and recall proliferation. We thus provide evidence for the establishment of memory-like virus-specific CD8(+) T cells in a clinically relevant setting of chronic viral infection and we uncover their fate after cessation of chronic antigen stimulation, implicating a potential strategy for antiviral immunotherapy
Micromagnetometry of two-dimensional ferromagnets
The study of atomically thin ferromagnetic crystals has led to the discovery
of unusual magnetic behaviour and provided insight into the magnetic properties
of bulk materials. However, the experimental techniques that have been used to
explore ferromagnetism in such materials cannot probe the magnetic field
directly. Here, we show that ballistic Hall micromagnetometry can be used to
measure the magnetization of individual two-dimensional ferromagnets. Our
devices are made by van der Waals assembly in such a way that the investigated
ferromagnetic crystal is placed on top of a multi-terminal Hall bar made from
encapsulated graphene. We use the micromagnetometry technique to study
atomically thin chromium tribromide (CrBr3). We find that the material remains
ferromagnetic down to monolayer thickness and exhibits strong out-of-plane
anisotropy. We also find that the magnetic response of CrBr3 varies little with
the number of layers and its temperature dependence cannot be described by the
simple Ising model of two-dimensional ferromagnetism.Comment: 19 pages, 12 figure
Spectroscopic scanning tunneling microscopy insights into Fe-based superconductors
In the first three years since the discovery of Fe-based high Tc
superconductors, scanning tunneling microscopy (STM) and spectroscopy have shed
light on three important questions. First, STM has demonstrated the complexity
of the pairing symmetry in Fe-based materials. Phase-sensitive quasiparticle
interference (QPI) imaging and low temperature spectroscopy have shown that the
pairing order parameter varies from nodal to nodeless s\pm within a single
family, FeTe1-xSex. Second, STM has imaged C4 -> C2 symmetry breaking in the
electronic states of both parent and superconducting materials. As a local
probe, STM is in a strong position to understand the interactions between these
broken symmetry states and superconductivity. Finally, STM has been used to
image the vortex state, giving insights into the technical problem of vortex
pinning, and the fundamental problem of the competing states introduced when
superconductivity is locally quenched by a magnetic field. Here we give a
pedagogical introduction to STM and QPI imaging, discuss the specific
challenges associated with extracting bulk properties from the study of
surfaces, and report on progress made in understanding Fe-based superconductors
using STM techniques.Comment: 36 pages, 23 figures, 229 reference
Functional classification of memory CD8(+) T cells by CX(3)CR1 expression
Localization of memory CD8(+) T cells to lymphoid or peripheral tissues is believed to correlate with proliferative capacity or effector function. Here we demonstrate that the fractalkine-receptor/CX(3)CR1 distinguishes memory CD8(+) T cells with cytotoxic effector function from those with proliferative capacity, independent of tissue-homing properties. CX(3)CR1-based transcriptome and proteome-profiling defines a core signature of memory CD8(+) T cells with effector function. We find CD62L(hi)CX(3)CR1(+) memory T cells that reside within lymph nodes. This population shows distinct migration patterns and positioning in proximity to pathogen entry sites. Virus-specific CX(3)CR1(+) memory CD8(+) T cells are scarce during chronic infection in humans and mice but increase when infection is controlled spontaneously or by therapeutic intervention. This CX3CR1-based functional classification will help to resolve the principles of protective CD8(+) T-cell memory
Altered subcortical emotional salience processing differentiates Parkinson’s patients with and without psychotic symptoms
Objective
Current research does not provide a clear explanation for why some patients with Parkinson’s Disease (PD) develop psychotic symptoms. The ‘aberrant salience hypothesis’ of psychosis has been influential and proposes that dopaminergic dysregulation leads to inappropriate attribution of salience to irrelevant/non-informative stimuli, facilitating the formation of hallucinations and delusions. The aim of this study is to investigate whether non-motivational salience is altered in PD patients and possibly linked to the development of psychotic symptoms.
Methods
We investigated salience processing in 14 PD patients with psychotic symptoms, 23 PD patients without psychotic symptoms and 19 healthy controls. All patients were on dopaminergic medication for their PD. We examined emotional salience using a visual oddball fMRI paradigm that has been used to investigate early stages of schizophrenia spectrum psychosis, controlling for resting cerebral blood flow as assessed with arterial spin labelling fMRI.
Results
We found significant differences between patient groups in brain responses to emotional salience. PD patients with psychotic symptoms had enhanced brain responses in the striatum, dopaminergic midbrain, hippocampus and amygdala compared to patients without psychotic symptoms. PD patients with psychotic symptoms showed significant correlations between the levels of dopaminergic drugs they were taking and BOLD signalling, as well as psychotic symptom scores.
Conclusion
Our study suggests that enhanced signalling in the striatum, dopaminergic midbrain, the hippocampus and amygdala is associated with the development of psychotic symptoms in PD, in line with that proposed in the ‘aberrant salience hypothesis’ of psychosis in schizophrenia
Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV
The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8 TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
- …