29 research outputs found

    New fine structure cooling rate

    Get PDF
    One of the dominant electron cooling processes in the ionosphere is caused by electron impact induced fine structure transitions among the ground state levels of atomic oxygen. This fine structure cooling rate is based on theoretical cross sections. Recent advances in the numerical cross section determinations to include polarization effects and more accurate representations of the atomic target result in new lower values. These cross sections are employed in this paper to derive a new fine structure cooling rate which is between 40% and 60% of the currently used rate. A new generalized formula is presented for the cooling rate (from which the fine structure cooling rate is derived), valid for arbitrary mass and temperature difference of the colliding particles and arbitrary inelastic energy difference

    Thermal electron heating rate: A derivation

    Get PDF
    The thermal electron heating rate is an important heat source term in the ionospheric electron energy balance equation, representing heating by photoelectrons or by precipitating higher energy electrons. A formula for the thermal electron heating rate is derived from the kinetic equation using the electron-electron collision operator as given by the unified theory of Kihara and Aono. This collision operator includes collective interactions to produce a finite collision operator with an exact Coulomb logarithm term. The derived heating rate O(e) is the sum of three terms, O(e) = O(p) + S + O(int), which are respectively: (1) primary electron production term giving the heating from newly created electrons that have not yet suffered collisions with the ambient electrons; (2) a heating term evaluated on the energy surface m(e)/2 = E(T) at the transition between Maxwellian and tail electrons at E(T); and (3) the integral term representing heating of Maxwellian electrons by energetic tail electrons at energies ET. Published ionospheric electron temperature studies used only the integral term O(int) with differing lower integration limits. Use of the incomplete heating rate could lead to erroneous conclusions regarding electron heat balance, since O(e) is greater than O(int) by as much as a factor of two

    Probe and radar electron temperatures in an isotropic, nonequilibrium plasma

    Get PDF
    Electron temperatures measured by electrostatic probes and radar backscatter in isotropic, nonequilibrium plasma for studying planetary atmosphere

    The effect of an isotopic non-equilibrium plasma on electron temperature measurements

    Get PDF
    Electron temperatures determined by electrostatic probe, diffuse resonance, and radar backscatter techniques in an isotropic two temperature plasma are presented. Plasma models corresponding to the addition of a minor component of energetic electrons, and models corresponding to a process that cools a fraction of the ionospheric electrons are considered. The diffuse resonance temperature is found to lie between the probe and radar backscatter temperatures. The isotropic models corresponding to the addition of energetic electrons cannot support the reported discrepancies between radio wave and probe electron temperature measurements. Temperature differences similar to the observed differences can be produced by models with a fraction of the electrons at a temperature cooler than that of the main component of electrons

    Three-particle collisions in a gas of hard spheres

    Get PDF
    Three particle collisions in gas of hard sphere

    Conditions for Aeronomic Applicability of the Classical Electron Heat Conduction Formula

    Get PDF
    Conditions for the applicability of the classical formula for heat conduction in the electrons in ionized gas are investigated. In a fully ionised gas ( V(sub en) much greater than V(sub ei)), when the mean free path for electron-electron (or electron-ion) collisions is much larger than the characteristic thermal scale length of the observed system, the conditions for applicability break down. In the case of the Venus ionosphere this breakdown is indicated for a large fraction of the electron temperature data from altitudes greater than 180 km, for electron densities less than 10(exp 4)/cc cm. In a partially ionised gas such that V(sub en) much greater than V(sub ei) there is breakdown of the formula not only when the mean free path of electrons greatly exceeds the thermal scale length, but also when the gradient of neutral particle density exceeds the electron thermal gradient. It is shown that electron heat conduction may be neglected in estimating the temperature of joule heated electrons by observed strong 100 Hz electric fields when the conduction flux is limited by the saturation flux. The results of this paper support our earlier aeronomical arguments against the hypothesis of planetary scale whistlers for the 100 Hz electric field signal. In turn this means that data from the 100 Hz signal may not be used to support the case for lightning on Venus

    Genetic diversity and colonization patterns of Onnia tomentosa and Phellinus tremulae (Hymenochaetaceae, Aphyllophorales) in the boreal forest near Thunder Bay, northwestern Ontario

    Get PDF
    Forest health is impacted greatly by fungi, particularly those that cause disease in living trees. By examining genetic diversity within populations of pathogenic fungi and their patterns of colonization it is possible to gain a greater understanding of host-pathogen interactions. Two common pathogens in the boreal forest are Onnia tomentosa, causal agent of a root-rot disease in spruce known as stand opening disease, and Phellinus tremulae, causal agent of white heart rot in stems of trembling aspen. Both fungi are members of the Hymenochaetaceae in the Basidiomycota. Two black spruce (Picea mariana) plantations located north of Nipigon were examined for Onnia tomentosa. Spatial coordinates of 124 basidiomata were taken, and the basidiomata collected from plots that had received different commercial thinning treatments. Using extracted DNA from each of the basidiomata, it was possible to measure genetic diversity and consequently genet size. One hundred and sixteen genetically distinct individuals were found suggesting that the majority of the basidiomata represented unique genets. The distribution pattern was mapped. Stand thinning appears to negatively impact colonization of spruce by O. tomentosa compared with that observed in unthinned control stands. In an ancillary study, a stand of trembling aspen (Populus tremuloides) located at Silver Mountain (74 km SW of Thunder Bay) was examined for Phellinus tremulae. Four infected trees were harvested and each stem cut into 50 cm sections with the top 5 cm from each section removed as a cookie. From each cookie, isolations of P. tremulae were made onto agar media and somatic compatibility techniques were utilized to determine size and distribution of genets in each tree. Two trees contained two genets of P. tremulae, one tree contained a single genet, while the remaining tree failed to yield any isolations of P. tremulae at all

    The Situational Awareness Sensor Suite for the ISS (SASSI): A Mission Concept to Investigate ISS Charging and Wake Effects

    Get PDF
    The complex interaction between the International Space Station (ISS) and the surrounding plasma environment often generates unpredictable environmental situations that affect operations. Examples of affected systems include extravehicular activity (EVA) safety, solar panel efficiency, and scientific instrument integrity. Models and heuristicallyderived best practices are wellsuited for routine operations, but when it comes to unusual or anomalous events or situations, especially those driven by space weather, there is no substitute for realtime monitoring. Space environment data collected in realtime (or nearreal time) can be used operationally for both realtime alarms and data sources in assimilative models to predict environmental conditions important for operational planning. Fixed space weather instruments mounted to the ISS can be used for monitoring the ambient space environment, but knowing whether or not (or to what extent) the ISS affects the measurements themselves requires adequate space situational awareness (SSA) local to the ISS. This paper presents a mission concept to use a suite of plasma instruments mounted at the end of the ISS robotic arm to systematically explore the interaction between the Space Station structure and its surrounding environment. The Situational Awareness Sensor Suite for the ISS (SASSI) would be deployed and operated on the ISS Express Logistics Carrier (ELC) for longterm "survey mode" observations and the Space Station Remote Manipulator System (SSRMS) for shortterm "campaign mode" observations. Specific areas of investigation include: 1) ISS frame and surface charging during perturbations of the local ISS space environment, 2) calibration of the ISS Floating Point Measurement Unit (FPMU), 3) long baseline measurements of ambient ionospheric electric potential structures, 4) electromotive force-induced currents within large structures moving through a magnetized plasma, and 5) wakeinduced ion waves in both electrostatic (i.e. particles) and electromagnetic modes. SASSI will advance the understanding of plasmaboundary interaction phenomena, demonstrate a suite a sensors acting in concert to provide effective SSA, and validate and/or calibrate existing ISS space environment instruments and models

    Investigating the Response and Expansion of Plasma Plumes in a Mesosonic Plasma Using the Situational Awareness Sensor Suite for the ISS (SASSI)

    Get PDF
    To study the complex interactions between the space environment surrounding the International Space Station (ISS) and the ISS space vehicle, we are exploring a specialized suite of plasma sensors, manipulated by the Space Station Remote Manipulator System (SSRMS) to probe the nearISS mesosonic plasma ionosphere moving past the ISS. It is proposed that SASSI consists of the NASA Marshall Space Flight Center's (MSFC's) Thermal Ion Capped Hemispherical Spectrometer (TICHS), Thermal Electron Capped Hemispherical Spectrometer (TECHS), Charge Analyzer Responsive to Local Oscillations (CARLO), the Collimated PhotoElectron Gun (CPEG), and the University of Michigan Advanced Langmuir Probe (ALP). There are multiple expected applications for SASSI. Here, we will discuss the study of fundamental plasma physics questions associated with how an emitted plasma plume (such as from the ISS Plasma Contactor Unit (PCU)) responds and expands in a mesosonic magnetoplasma as well as emit and collect current. The ISS PCU Xe plasma plume drifts through the ionosphere and across the Earth's magnetic field, resulting in complex dynamics. This is of practical and theoretical interest pertaining to contamination concerns (e.g. energetic ion scattering) and the ability to collect and emit current between the spacecraft and the ambient plasma ionosphere. This impacts, for example, predictions of electrodynamic tether current performance using plasma contactors as well as decisions about placing highenergy electric propulsion thrusters on ISS. We will discuss the required measurements and connection to proposed instruments for this study

    Pioneer Venus Orbiter Measurements of Solar EUV Flux During Solar Cycles 21 and 22

    Full text link
    The Pioneer Venus Orbiter (PVO) had on board the electron temperature probe experiment which measured temperature and concentration of electrons in the ionosphere of Venus. When the probe was outside the Venus ionosphere and was in the solar wind, the probe current was entirely due to solar photons striking the probe surface. This probe thus measured integrated solar EUV flux (Ipe) over a 13-year period from January 1979 to December 1991, thereby covering the declining phase of solar cycle 21 and the rising phase of solar cycle 22. In this paper, we examine the behavior of Ipe translated to the solar longitude of Earth (to be called EIpe) during the two solar cycles. We find that total EUV flux changed by about 60% during solar cycle 21 and by about 100% in solar cycle 22. We also compare this flux with other solar activity indicators such as F_10.7 , Lα, and the solar magnetic field. We find that while the daily values of EIpe are highly correlated with F_10.7 (correlation coefficient 0.87), there is a large scatter in EIpe for any value of this Earth-based index. A comparison of EIpe with SME and UARS SOLSTICE Lα measurements taken during the same period shows that EIpe tracks Lα quite faithfully with a correlation coefficient of 0.94. Similar comparison with the solar magnetic field (Bs) shows that EIpe correlates better with Bs than with F_10.7 . We also compare EIpe with total solar irradiance measured during the same period.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43713/1/11207_2004_Article_140430.pd
    corecore