4 research outputs found

    The central region of M 31 observed with XMM-Newton. I. Group properties and diffuse emission

    Full text link
    We present the results of a study based on an XMM-Newton Performance Verification observation of the central 30´of the nearby spiral galaxy M 31. In the 34-ks European Photon Imaging Camera (EPIC) exposure, we detect 116 sources down to a limiting luminosity of #1 10#2 erg s-1 (0.3-12 keV, d=760 kpc). The luminosity distribution of the sources detected with XMM-Newton flattens at luminosities below ∼\sim 2.5 1037 erg s-1 . We make use of hardness ratios for the detected sources in order to distinguish between classes of objects such as super-soft sources and intrinsically hard or highly absorbed sources. We demonstrate that the spectrum of the unresolved emission in the bulge of M 31 contains a soft excess which can be fitted with a ∼\sim0.35-keV optically-thin thermal-plasma component clearly distinct from the composite point-source spectrum. We suggest that this may represent diffuse gas in the centre of M 31, and we illustrate its extent in a wavelet-deconvolved image

    The XMM-Newton bright serendipitous survey - Identification and optical spectral properties

    Get PDF
    Aims.We present the optical classification and redshift of 348 X-ray selected sources from the XMM-Newton Bright Serendipitous Survey (XBS), which contains a total of 400 objects (identification level = 87%). About 240 are new identifications. In particular, we discuss in detail the classification criteria adopted for the active galactic nuclei (AGNs) population. Methods.By means of systematic spectroscopic campaigns using various telescopes and through the literature search, we have collected an optical spectrum for the large majority of the sources in the XBS survey and applied a well-defined classification "flow chart". Results.We find that the AGNs represent the most numerous population at the flux limit of the XBS survey (~10-13 erg cm-2 s-1) constituting 80% of the XBS sources selected in the 0.5-4.5 keV energy band and 95% of the "hard" (4.5-7.5 keV) selected objects. Galactic sources populate the 0.5-4.5 keV sample significantly (17%) and only marginally (3%) the 4.5-7.5 keV sample. The remaining sources in both samples are clusters/groups of galaxies and normal galaxies (i.e. probably not powered by an AGN). Furthermore, the percentage of type 2 AGNs (i.e. optically absorbed AGNs with AV>2A_{\rm V}>2 mag) dramatically increases going from the 0.5-4.5 keV sample ( f=NAGN2/NAGN=7f=N_{\rm AGN 2}/N_{\rm AGN}=7%) to the 4.5-7.5 keV sample (f=32%). We finally propose two simple diagnostic plots that can be easily used to obtain the spectral classification for relatively low-redshift AGNs even if the quality of the spectrum is not good

    The European Photon Imaging Camera on XMM-Newton: The pn-CCD camera

    Full text link
    The European Photon Imaging Camera (EPIC) consortium has provided the focal plane instruments for the three X-ray mirror systems on XMM-Newton. Two cameras with a reflecting grating spectrometer in the optical path are equipped with MOS type CCDs as focal plane detectors (Turner 2001), the telescope with the full photon flux operates the novel pn-CCD as an imaging X-ray spectrometer. The pn-CCD camera system was developed under the leadership of the Max-Planck-Institut für extraterrestrische Physik (MPE), Garching. The concept of the pn-CCD is described as well as the different operational modes of the camera system. The electrical, mechanical and thermal design of the focal plane and camera is briefly treated. The in-orbit performance is described in terms of energy resolution, quantum efficiency, time resolution, long term stability and charged particle background. Special emphasis is given to the radiation hardening of the devices and the measured and expected degradation due to radiation damage of ionizing particles in the first 9 months of in orbit operation

    The XMM-Newton Serendipitous Survey: I - The role of XMM-Newton Survey Science Centre

    Full text link
    This paper describes the performance of XMM-Newton for serendipitous surveys and summarises the scope and potential of the XMM-Newton Serendipitous Survey. The role of the Survey Science Centre (SSC) in the XMM-Newton project is outlined. The SSC's follow-up and identification programme for the XMM-Newton serendipitous survey is described together with the presentation of some of the first results
    corecore