803 research outputs found

    Multiple-crystal X-ray topographic characterization of periodically domain-inverted KTiOPO4 crystal

    Get PDF
    A periodically domain-inverted KTiOPO4 crystal has been characterized for the first time by multiple-crystal multiple-reflection x-ray topography. The striation contrast within the domain- inverted regions has been revealed in high strain-sensitivity reflection topographs. The origin of formation of the striation contrast and the mechanism of domain inversion in KTiOPO4 are discussed in terms of the structural characteristics of KTiOPO4

    A high-performance integrated single-photon detector for telecom wavelengths

    Full text link
    We have integrated a commercial avalanche photodiode (APD) and the circuitry needed to operate it as a single-photon detector (SPD) onto a single PC-board. At temperatures accessible with Peltier coolers (~200-240K), the PCB-SPD achieves high detection efficiency (DE) at 1308 and 1545 nm with low dark count probability (e.g. ~10-6/bias pulse at DE=20%, 220 K), making it useful for quantum key distribution (QKD). The board generates fast bias pulses, cancels noise transients, amplifies the signals, and sends them to an on-board discriminator. A digital blanking circuit suppresses afterpulsing.Comment: (10 pages, 6 figures

    Solving the riddle of codon usage preferences: a test for translational selection

    Get PDF
    Translational selection is responsible for the unequal usage of synonymous codons in protein coding genes in a wide variety of organisms. It is one of the most subtle and pervasive forces of molecular evolution, yet, establishing the underlying causes for its idiosyncratic behaviour across living kingdoms has proven elusive to researchers over the past 20 years. In this study, a statistical model for measuring translational selection in any given genome is developed, and the test is applied to 126 fully sequenced genomes, ranging from archaea to eukaryotes. It is shown that tRNA gene redundancy and genome size are interacting forces that ultimately determine the action of translational selection, and that an optimal genome size exists for which this kind of selection is maximal. Accordingly, genome size also presents upper and lower boundaries beyond which selection on codon usage is not possible. We propose a model where the coevolution of genome size and tRNA genes explains the observed patterns in translational selection in all living organisms. This model finally unifies our understanding of codon usage across prokaryotes and eukaryotes. Helicobacter pylori, Saccharomyces cerevisiae and Homo sapiens are codon usage paradigms that can be better understood under the proposed model

    Prediction of photoperiodic regulators from quantitative gene circuit models

    Get PDF
    Photoperiod sensors allow physiological adaptation to the changing seasons. The external coincidence hypothesis postulates that a light-responsive regulator is modulated by a circadian rhythm. Sufficient data are available to test this quantitatively in plants, though not yet in animals. In Arabidopsis, the clock-regulated genes CONSTANS (CO) and FLAVIN, KELCH, F-BOX (FKF1) and their lightsensitive proteins are thought to form an external coincidence sensor. We use 40 timeseries of molecular data to model the integration of light and timing information by CO, its target gene FLOWERING LOCUS T (FT), and the circadian clock. Among other predictions, the models show that FKF1 activates FT. We demonstrate experimentally that this effect is independent of the known activation of CO by FKF1, thus we locate a major, novel controller of photoperiodism. External coincidence is part of a complex photoperiod sensor: modelling makes this complexity explicit and may thus contribute to crop improvement

    High prevalence of bronchiectasis is linked to HTLV-1-associated inflammatory disease.

    Get PDF
    BACKGROUND: Human T-lymphotropic virus type 1 (HTLV-1), a retrovirus, is the causative agent of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T-cell leukaemia/lymphoma (ATLL). The reported association with pulmonary disease such as bronchiectasis is less certain. METHODS: A retrospective case review of a HTLV-1 seropositive cohort attending a national referral centre. The cohort was categorised into HTLV-1 symptomatic patients (SPs) (ATLL, HAM/TSP, Strongyloidiasis and HTLV associated inflammatory disease (HAID)) and HTLV-1 asymptomatic carriers (ACs). The cohort was reviewed for diagnosis of bronchiectasis. RESULT: 34/246 ACs and 30/167 SPs had been investigated for respiratory symptoms by computer tomography (CT) with productive cough +/- recurrent chest infections the predominant indications. Bronchiectasis was diagnosed in one AC (1/246) and 13 SPs (2 HAID, 1 ATLL, 10 HAM/TSP) (13/167, RR 19.2 95 % CI 2.5-14.5, p = 0.004) with high resolution CT. In the multivariate analysis ethnicity (p = 0.02) and disease state (p < 0.001) were independent predictors for bronchiectasis. The relative risk of bronchiectasis in SPs was 19.2 (95 % CI 2.5-14.5, p = 0.004) and in HAM/TSP patients compared with all other categories 8.4 (95 % CI 2.7-26.1, p = 0.0002). Subjects not of African/Afro-Caribbean ethnicity had an increased prevalence of bronchiectasis (RR 3.45 95 % 1.2-9.7, p = 0.02). CONCLUSIONS: Bronchiectasis was common in the cohort (3.4 %). Risk factors were a prior diagnosis of HAM/TSP and ethnicity but not HTLV-1 viral load, age and gender. The spectrum of HTLV-associated disease should now include bronchiectasis and HTLV serology should be considered in patients with unexplained bronchiectasis

    Theory of modulational instability in Bragg gratings with quadratic nonlinearity

    Get PDF
    Modulational instability in optical Bragg gratings with a quadratic nonlinearity is studied. The electric field in such structures consists of forward and backward propagating components at the fundamental frequency and its second harmonic. Analytic continuous wave (CW) solutions are obtained, and the intricate complexity of their stability, due to the large number of equations and number of free parameters, is revealed. The stability boundaries are rich in structures and often cannot be described by a simple relationship. In most cases, the CW solutions are unstable. However, stable regions are found in the nonlinear Schrodinger equation limit, and also when the grating strength for the second harmonic is stronger than that of the first harmonic. Stable CW solutions usually require a low intensity. The analysis is confirmed by directly simulating the governing equations. The stable regions found have possible applications in second-harmonic generation and dark solitons, while the unstable regions maybe useful in the generation of ultrafast pulse trains at relatively low intensities. [S1063-651X(99)03005-6]

    Effects of diabetes definition on global surveillance of diabetes prevalence and diagnosis: a pooled analysis of 96 population-based studies with 331 288 participants

    Get PDF
    Background: Diabetes has been defined on the basis of different biomarkers, including fasting plasma glucose (FPG), 2-h plasma glucose in an oral glucose tolerance test (2hOGTT), and HbA1c. We assessed the effect of different diagnostic definitions on both the population prevalence of diabetes and the classifi cation of previously undiagnosed individuals as having diabetes versus not having diabetes in a pooled analysis of data from population-based health examination surveys in diff erent regions. Methods: We used data from 96 population-based health examination surveys that had measured at least two of the biomarkers used for defining diabetes. Diabetes was defined using HbA1c (HbA1c ≥6·5% or history of diabetes diagnosis or using insulin or oral hypoglycaemic drugs) compared with either FPG only or FPG-or-2hOGTT definitions (FPG ≥7·0 mmol/L or 2hOGTT ≥11·1 mmol/L or history of diabetes or using insulin or oral hypoglycaemic drugs). We calculated diabetes prevalence, taking into account complex survey design and survey sample weights. We compared the prevalences of diabetes using different definitions graphically and by regression analyses. We calculated sensitivity and specificity of diabetes diagnosis based on HbA1c compared with diagnosis based on glucose among previously undiagnosed individuals (ie, excluding those with history of diabetes or using insulin or oral hypoglycaemic drugs). We calculated sensitivity and specificity in each survey, and then pooled results using a random-effects model. We assessed the sources of heterogeneity of sensitivity by meta-regressions for study characteristics selected a priori. Findings: Population prevalence of diabetes based on FPG-or-2hOGTT was correlated with prevalence based on FPG alone (r=0·98), but was higher by 2–6 percentage points at different prevalence levels. Prevalence based on HbA1c was lower than prevalence based on FPG in 42·8% of age–sex–survey groups and higher in another 41·6%; in the other 15·6%, the two definitions provided similar prevalence estimates. The variation across studies in the relation between glucose-based and HbA1c-based prevalences was partly related to participants’ age, followed by natural logarithm of per person gross domestic product, the year of survey, mean BMI, and whether the survey population was national, subnational, or from specific communities. Diabetes defined as HbA1c 6·5% or more had a pooled sensitivity of 52·8% (95% CI 51·3–54·3%) and a pooled specificity of 99·74% (99·71–99·78%) compared with FPG 7·0 mmol/L or more for diagnosing previously undiagnosed participants; sensitivity compared with diabetes defined based on FPGor-2hOGTT was 30·5% (28·7–32·3%). None of the preselected study-level characteristics explained the heterogeneity in the sensitivity of HbA1c versus FPG. Interpretation: Different biomarkers and definitions for diabetes can provide different estimates of population prevalence of diabetes, and differentially identify people without previous diagnosis as having diabetes. Using an HbA1c-based definition alone in health surveys will not identify a substantial proportion of previously undiagnosed people who would be considered as having diabetes using a glucose-based test

    Multidimensional characterization of global food supply from 1961 to 2013

    Get PDF
    Food systems are increasingly globalized and interdependent, and diets around the world are changing. Characterization of national food supplies and how they have changed can inform food policies that ensure national food security, support access to healthy diets and enhance environmental sustainability. Here we analysed data for 171 countries on the availability of 18 food groups from the United Nations Food and Agriculture Organization to identify and track multidimensional food supply patterns from 1961 to 2013. Four predominant food-group combinations were identified that explained almost 90% of the cross-country variance in food supply: animal source and sugar, vegetable, starchy root and fruit, and seafood and oilcrops. South Korea, China and Taiwan experienced the largest changes in food supply over the past five decades, with animal source foods and sugar, vegetables and seafood and oilcrops all becoming more abundant components of the food supply. In contrast, in many Western countries the supply of animal source foods and sugar declined. Meanwhile, there was remarkably little change in the food supply in countries in the sub-Saharan Africa region. These changes led to a partial global convergence in the national supply of animal source foods and sugar, and a divergence in those of vegetables and of seafood and oilcrops. Our analysis generated a novel characterization of food supply that highlights the interdependence of multiple food types in national food systems. A better understanding of how these patterns have evolved and will continue to change is needed to support the delivery of healthy and sustainable food system policies

    Theory of multidimensional parametric band-gap simultons

    Get PDF
    Multidimensional spatiotemporal parametric simultons (simultaneous solitary waves) are possible in a nonlinear chi((2)) medium with a Bragg grating structure, where large effective dispersion occurs near two resonant band gaps for the carrier and second-harmonic field, respectively. The enhanced dispersion allows much reduced interaction lengths, as compared to bulk medium parametric simultons. The nonlinear parametric band-gap medium permits higher-dimensional stationary waves to form. In addition, solitons can occur with lower input powers than conventional nonlinear Schrodinger equation gap solitons. In this paper, the equations for electromagnetic propagation in a grating structure with a parametric nonlinearity are derived from Maxwell's equation using a coupled mode Hamiltonian analysis in one, two, and three spatial dimensions. Simultaneous solitary wave solutions are proved to exist by reducing the equations to the coupled equations describing a nonlinear parametric waveguide, using the effective-mass approximation (EMA). Exact one-dimensional numerical solutions in agreement with the EMA solutions are also given. Direct numerical simulations show that the solutions have similar types of stability properties to the bulk case, providing the carrier waves are tuned to the two Bragg resonances, and the pulses have a width in frequency space less than the band gap. In summary, these equations describe a physically accessible localized nonlinear wave that is stable in up to 3 + 1 dimensions. Possible applications include photonic logic and switching devices. [S1063-651X(98)06109-1]
    • …
    corecore