481 research outputs found
Electromagnetically induced transparency in superconducting quantum circuits : Effects of decoherence, tunneling and multi-level cross-talk
We explore theoretically electromagnetically-induced transparency (EIT) in a
superconducting quantum circuit (SQC). The system is a persistent-current flux
qubit biased in a configuration. Previously [Phys. Rev. Lett. 93,
087003 (2004)], we showed that an ideally-prepared EIT system provides a
sensitive means to probe decoherence. Here, we extend this work by exploring
the effects of imperfect dark-state preparation and specific decoherence
mechanisms (population loss via tunneling, pure dephasing, and incoherent
population exchange). We find an initial, rapid population loss from the
system for an imperfectly prepared dark state. This is followed by a
slower population loss due to both the detuning of the microwave fields from
the EIT resonance and the existing decoherence mechanisms. We find analytic
expressions for the slow loss rate, with coefficients that depend on the
particular decoherence mechanisms, thereby providing a means to probe,
identify, and quantify various sources of decoherence with EIT. We go beyond
the rotating wave approximation to consider how strong microwave fields can
induce additional off-resonant transitions in the SQC, and we show how these
effects can be mitigated by compensation of the resulting AC Stark shifts
Test of Bell's Inequality using the Spin Filter Effect in Ferromagnetic Semiconductor Micro-structures
A theoretical proposal for testing Bell's inequality in mesoscopic systems is
presented. We show that the entanglement of two electron spins can be detected
in the spin filter effect in the mesoscopic semiconductor / ferromagnetic
semiconductor / semiconductor junction. The current-current correlation
function is calculated by use of the quantum scattering theory and we compare
it with the local hidden variable theory. We also discuss the influence of an
imperfect spin filter and derive the condition to see the violation of Bell's
inequality experimentally.Comment: 6 pages, 4 figures, submitted to J. Phys. Soc. Jp
Electron Spins in Artificial Atoms and Molecules for Quantum Computing
Achieving control over the electron spin in quantum dots (artificial atoms)
or real atoms promises access to new technologies in conventional and in
quantum information processing. Here we review our proposal for quantum
computing with spins of electrons confined to quantum dots. We discuss the
basic requirements for implementing spin-qubits, and describe a complete set of
quantum gates for single- and two-qubit operations. We show how a quantum dot
attached to leads can be used for spin filtering and spin read-out, and as a
spin-memory device. Finally, we focus on the experimental characterization of
the quantum dot systems, and discuss transport properties of a double-dot and
show how Kondo correlations can be used to measure the Heisenberg exchange
interaction between the spins of two dots.Comment: 13 pages, 8 figures, Invited Review (Semiconductor Spintronics,
Special Issue of SST
Dynamical Generation of Noiseless Quantum Subsystems
We present control schemes for open quantum systems that combine decoupling
and universal control methods with coding procedures. By exploiting a general
algebraic approach, we show how appropriate encodings of quantum states result
in obtaining universal control over dynamically-generated noise-protected
subsystems with limited control resources. In particular, we provide an
efficient scheme for performing universal encoded quantum computation in a wide
class of systems subjected to linear non-Markovian quantum noise and supporting
Heisenberg-type internal Hamiltonians.Comment: 4 pages, no figures; REVTeX styl
Electrical current noise of a beam splitter as a test of spin-entanglement
We investigate the spin entanglement in the superconductor-quantum dot system
proposed by Recher, Sukhorukov and Loss, coupling it to an electronic
beam-splitter. The superconductor-quantum dot entangler and the beam-splitter
are treated within a unified framework and the entanglement is detected via
current correlations. The state emitted by the entangler is found to be a
linear superposition of non-local spin-singlets at different energies, a
spin-entangled two-particle wavepacket. Colliding the two electrons in the
beam-splitter, the singlet spin-state gives rise to a bunching behavior,
detectable via the current correlators. The amount of bunching depends on the
relative positions of the single particle levels in the quantum dots and the
scattering amplitudes of the beam-splitter. The singlet spin entanglement,
insensitive to orbital dephasing but suppressed by spin dephasing, is
conveniently quantified via the Fano factors. It is found that the
entanglement-dependent contribution to the Fano factor is of the same magnitude
as the non-entangled, making an experimental detection feasible. A detailed
comparison between the current correlations of the non-local spin-singlet state
and other states, possibly emitted by the entangler, is performed. This
provides conditions for an unambiguous identification of the non-local singlet
spin entanglement.Comment: 13 pages, 8 figures, section on quantification of entanglement adde
Effect of quantum fluctuations on structural phase transitions in SrTiO_3 and BaTiO_3
Using path-integral Monte Carol simulations and an ab initio effective
Hamiltonian, we study the effects of quantum fluctuations on structural phase
transitions in the cubic perovskite compounds SrTiO3 and BaTiO3. We find
quantum fluctuations affect ferroelectric (FE) transitions more strongly than
antiferrodistortive (AFD) ones, even though the effective mass of a single FE
local mode is larger. For SrTiO3 we find that the quantum fluctuations suppress
the FE transition completely, and reduce the AFD transition temperature from
130K to 110K. For BaTiO3, quantum fluctuations do not affect the order of the
transition, but do reduce the transition temperature by 35-50 K. The
implications of the calculations are discussed.Comment: Revtex (preprint style, 14 pages) + 2 postscript figures. A version
in two-column article style with embedded figures is available at
http://electron.rutgers.edu/~dhv/preprints/index.html#wz_qs
Quantum trajectories for the realistic measurement of a solid-state charge qubit
We present a new model for the continuous measurement of a coupled quantum
dot charge qubit. We model the effects of a realistic measurement, namely
adding noise to, and filtering, the current through the detector. This is
achieved by embedding the detector in an equivalent circuit for measurement.
Our aim is to describe the evolution of the qubit state conditioned on the
macroscopic output of the external circuit. We achieve this by generalizing a
recently developed quantum trajectory theory for realistic photodetectors [P.
Warszawski, H. M. Wiseman and H. Mabuchi, Phys. Rev. A_65_ 023802 (2002)] to
treat solid-state detectors. This yields stochastic equations whose (numerical)
solutions are the ``realistic quantum trajectories'' of the conditioned qubit
state. We derive our general theory in the context of a low transparency
quantum point contact. Areas of application for our theory and its relation to
previous work are discussed.Comment: 7 pages, 2 figures. Shorter, significantly modified, updated versio
Semiclassical theory of spin-polarized shot noise in mesoscopic diffusive conductors
We study fluctuations of spin-polarized currents in a three-terminal
spin-valve system consisting of a diffusive normal metal wire connected by
tunnel junctions to three ferromagnetic terminals. Based on a spin-dependent
Boltzmann-Langevin equation, we develop a semiclassical theory of charge and
spin currents and the correlations of the currents fluctuations. In the three
terminal system, we show that current fluctuations are strongly affected by the
spin-flip scattering in the normal metal and the spin polarizations of the
terminals, which may point in different directions. We analyze the dependence
of the shot noise and the cross-correlations on the spin-flip scattering rate
in the full range of the spin polarizations and for different magnetic
configurations. Our result demonstrate that noise measurements in
multi-terminal devices allow to determine the spin-flip scattering rate by
changing the polarizations of ferromagnetic terminals.Comment: 12 pages, 5 figure
Protecting Quantum Information Encoded in Decoherence Free States Against Exchange Errors
The exchange interaction between identical qubits in a quantum information
processor gives rise to unitary two-qubit errors. It is shown here that
decoherence free subspaces (DFSs) for collective decoherence undergo Pauli
errors under exchange, which however do not take the decoherence free states
outside of the DFS. In order to protect DFSs against these errors it is
sufficient to employ a recently proposed concatenated DFS-quantum error
correcting code scheme [D.A. Lidar, D. Bacon and K.B. Whaley, Phys. Rev. Lett.
{\bf 82}, 4556 (1999)].Comment: 7 pages, no figures. Discussion in section V.A. significantly
expanded. Several small changes. Two authors adde
- …