14 research outputs found

    Two and Three Dimensional Incommensurate Modulation in Optimally-Doped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}

    Full text link
    X-ray scattering measurements on optimally-doped single crystal samples of the high temperature superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} reveal the presence of three distinct incommensurate charge modulations, each involving a roughly fivefold increase in the unit cell dimension along the {\bf b}-direction. The strongest scattering comes from the well known (H, K±\pm 0.21, L) modulation and its harmonics. However, we also observe broad diffraction which peak up at the L values complementary to those which characterize the known modulated structure. These diffraction features correspond to correlation lengths of roughly a unit cell dimension, ξc\xi_c∼\sim20 A˚\AA in the {\bf c} direction, and of ξb\xi_b∼\sim 185 A˚\AA parallel to the incommensurate wavevector. We interpret these features as arising from three dimensional incommensurate domains and the interfaces between them, respectively. In addition we investigate the recently discovered incommensuate modulations which peak up at (1/2, K±\pm 0.21, L) and related wavevectors. Here we explicitly study the L-dependence of this scattering and see that these charge modulations are two dimensional in nature with weak correlations on the scale of a bilayer thickness, and that they correspond to short range, isotropic correlation lengths within the basal plane. We relate these new incommensurate modulations to the electronic nanostructure observed in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} using STM topography.Comment: 8 pages, 8 figure

    Gastric point-of-care ultrasound in acutely and critically ill children (POCUS-ped): a scoping review

    Get PDF
    Point-of-care ultrasound (POCUS) use is increasing in pediatric clinical settings. However, gastric POCUS is rarely used, despite its potential value in optimizing the diagnosis and management in several clinical scenarios (i.e., assessing gastric emptying and gastric volume/content, gastric foreign bodies, confirming nasogastric tube placement, and hypertrophic pyloric stenosis). This review aimed to assess how gastric POCUS may be used in acute and critically ill children. An international expert group was established, composed of pediatricians, pediatric intensivists, anesthesiologists, radiologists, nurses, and a methodologist. A scoping review was conducted with an aim to describe the use of gastric POCUS in pediatrics in acute and critical care settings. A literature search was conducted in three databases, to identify studies published between 1998 and 2022. Abstracts and relevant full texts were screened for eligibility, and data were extracted, according to the JBI methodology (Johanna Briggs Institute). A total of 70 studies were included. Most studies ( = 47; 67%) were conducted to assess gastric emptying and gastric volume/contents. The studies assessed gastric volume, the impact of different feed types (breast milk, fortifiers, and thickeners) and feed administration modes on gastric emptying, and gastric volume/content prior to sedation or anesthesia or during surgery. Other studies described the use of gastric POCUS in foreign body ingestion ( = 6), nasogastric tube placement ( = 5), hypertrophic pyloric stenosis ( = 8), and gastric insufflation during mechanical ventilatory support ( = 4). POCUS was performed by neonatologists, anesthesiologists, emergency department physicians, and surgeons. Their learning curve was rapid, and the accuracy was high when compared to that of the ultrasound performed by radiologists (RADUS) or other gold standards (e.g., endoscopy, radiography, and MRI). No study conducted in critically ill children was found apart from that in neonatal intensive care in preterms. Gastric POCUS appears useful and reliable in a variety of pediatric clinical settings. It may help optimize induction in emergency sedation/anesthesia, diagnose foreign bodies and hypertrophic pyloric stenosis, and assist in confirming nasogastric tube placement, avoiding delays in obtaining confirmatory examinations (RADUS, x-rays, etc.) and reducing radiation exposure. It may be useful in pediatric intensive care but requires further investigation. [Abstract copyright: Copyright © 2022 Valla, Tume, Jotterand Chaparro, Arnold, Alrayashi, Morice, Nabialek, Rouchaud, Cercueil and Bouvet.

    Gain measurements on VCSEL material using segmented contact technique

    Get PDF
    We report direct measurements of the optical gain on vertical-cavity surface-emitting laser (VCSEL) material using a stripe-length method featuring segmented contacts. We utilise the similarity of the in-plane transverse electric (TE) polarised matrix element and that of the VCSEL lasing mode and a simple method to reduce round trip effects. The confinement factor is determined from cold-cavity simulations of the in-plane TE polarised slab waveguide mode and used to convert the measured in-plane modal gain into the vertical-cavity modal gain, as required for the VCSEL structure. This gives a threshold material gain of 1440 ± 140 cm−1 at 30 °C for this structure. A comparison with the threshold material gain values determined from the lasing condition, where internal optical losses due to doping induced absorption is included using parameters taken from the literature, indicates the presence of an additional source of optical loss in the experiment which increases the threshold material gain by ∼450 cm−1. A best fit is obtained by increasing the optical loss in the n-DBR (distributed Bragg reflectors) layers to 40 cm−1, which is consistent with previous work on additional scattering losses due to interface roughening in the n-DBR layers. To further demonstrate the utility of this method for rapid optimisation, the gain-peak wavelength is measured directly, and its temperature dependence is compared to the lasing wavelength

    Bioactive Sphingolipids, Complement Cascade, and Free Hemoglobin Levels in Stable Coronary Artery Disease and Acute Myocardial Infarction

    No full text
    Background. Acute myocardial infarction (AMI) and coronary artery bypass graft (CABG) surgery are associated with a pathogen-free inflammatory response (sterile inflammation). Complement cascade (CC) and bioactive sphingolipids (BS) are postulated to be involved in this process. Aim. The aim of this study was to evaluate plasma levels of CC cleavage fragments (C3a, C5a, and C5b9), sphingosine (SP), sphingosine-1-phosphate (S1P), and free hemoglobin (fHb) in AMI patients treated with primary percutaneous coronary intervention (pPCI) and stable coronary artery disease (SCAD) undergoing CABG. Patients and Methods. The study enrolled 37 subjects (27 male) including 22 AMI patients, 7 CABG patients, and 8 healthy individuals as the control group (CTRL). In the AMI group, blood samples were collected at 5 time points (admission to hospital, 6, 12, 24, and 48 hours post pPCI) and 4 time points in the CABG group (6, 12, 24, and 48 hours post operation). SP and S1P concentrations were measured by high-performance liquid chromatography (HPLC). Analysis of C3a, C5a, and C5b9 levels was carried out using high-sensitivity ELISA and free hemoglobin by spectrophotometry. Results. The plasma levels of CC cleavage fragments (C3a and C5b9) were significantly higher, while those of SP and S1P were lower in patients undergoing CABG surgery in comparison to the AMI group. In both groups, levels of CC factors showed no significant changes within 48 hours of follow-up. Conversely, SP and S1P levels gradually decreased throughout 48 hours in the AMI group but remained stable after CABG. Moreover, the fHb concentration was significantly higher after 24 and 48 hours post pPCI compared to the corresponding postoperative time points. Additionally, the fHb concentrations increased between 12 and 48 hours after PCI in patients with AMI. Conclusions. Inflammatory response after AMI and CABG differed regarding the release of sphingolipids, free hemoglobin, and complement cascade cleavage fragments
    corecore