393 research outputs found

    Inflationary spectra and partially decohered distributions

    Full text link
    It is generally expected that decoherence processes will erase the quantum properties of the inflationary primordial spectra. However, given the weakness of gravitational interactions, one might end up with a distribution which is only partially decohered. Below a certain critical change, we show that the inflationary distribution retains quantum properties. We identify four of these: a squeezed spread in some direction of phase space, non-vanishing off-diagonal matrix elements, and two properties used in quantum optics called non-PP-representability and non-separability. The last two are necessary conditions to violate Bell's inequalities. The critical value above which all these properties are lost is associated to the `grain' of coherent states. The corresponding value of the entropy is equal to half the maximal (thermal) value. Moreover it coincides with the entropy of the effective distribution obtained by neglecting the decaying modes. By considering backreaction effects, we also provide an upper bound for this entropy at the onset of the adiabatic era.Comment: 42 pages, 9 figures; 1 ref. adde

    Oscillations of rapidly rotating relativistic stars

    Full text link
    Non-axisymmetric oscillations of rapidly rotating relativistic stars are studied using the Cowling approximation. The oscillation spectra have been estimated by Fourier transforming the evolution equations describing the perturbations. This is the first study of its kind and provides information on the effect of fast rotation on the oscillation spectra while it offers the possibility in studying the complete problem by including spacetime perturbations. Our study includes both axisymmetric and non-axisymmetric perturbations and provides limits for the onset of the secular bar mode rotational instability. We also present approximate formulae for the dependence of the oscillation spectrum from rotation. The results suggest that it is possible to extract the relativistic star's parameters from the observed gravitational wave spectrum.Comment: this article will be published in Physical Review

    Achieving geodetic motion for LISA test masses: ground testing result

    Full text link
    The low-frequency resolution of space-based gravitational wave observatories such as LISA (Laser Interferometry Space Antenna) hinges on the orbital purity of a free-falling reference test mass inside a satellite shield. We present here a torsion pendulum study of the forces that will disturb an orbiting test mass inside a LISA capacitive position sensor. The pendulum, with a measured torque noise floor below 10 fNm/sqrt{Hz} from 0.6 to 10 mHz, has allowed placement of an upper limit on sensor force noise contributions, measurement of the sensor electrostatic stiffness at the 5% level, and detection and compensation of stray DC electrostatic biases at the mV level.Comment: 4 pages (revtex4) with 4 figure

    Sensitivity and parameter-estimation precision for alternate LISA configurations

    Get PDF
    We describe a simple framework to assess the LISA scientific performance (more specifically, its sensitivity and expected parameter-estimation precision for prescribed gravitational-wave signals) under the assumption of failure of one or two inter-spacecraft laser measurements (links) and of one to four intra-spacecraft laser measurements. We apply the framework to the simple case of measuring the LISA sensitivity to monochromatic circular binaries, and the LISA parameter-estimation precision for the gravitational-wave polarization angle of these systems. Compared to the six-link baseline configuration, the five-link case is characterized by a small loss in signal-to-noise ratio (SNR) in the high-frequency section of the LISA band; the four-link case shows a reduction by a factor of sqrt(2) at low frequencies, and by up to ~2 at high frequencies. The uncertainty in the estimate of polarization, as computed in the Fisher-matrix formalism, also worsens when moving from six to five, and then to four links: this can be explained by the reduced SNR available in those configurations (except for observations shorter than three months, where five and six links do better than four even with the same SNR). In addition, we prove (for generic signals) that the SNR and Fisher matrix are invariant with respect to the choice of a basis of TDI observables; rather, they depend only on which inter-spacecraft and intra-spacecraft measurements are available.Comment: 17 pages, 4 EPS figures, IOP style, corrected CQG versio

    Regularization of statistical inverse problems and the Bakushinskii veto

    Get PDF
    In the deterministic context Bakushinskii's theorem excludes the existence of purely data driven convergent regularization for ill-posed problems. We will prove in the present work that in the statistical setting we can either construct a counter example or develop an equivalent formulation depending on the considered class of probability distributions. Hence, Bakushinskii's theorem does not generalize to the statistical context, although this has often been assumed in the past. To arrive at this conclusion, we will deduce from the classic theory new concepts for a general study of statistical inverse problems and perform a systematic clarification of the key ideas of statistical regularization.Comment: 20 page

    Acceleration disturbances and requirements for ASTROD I

    Full text link
    ASTRODynamical Space Test of Relativity using Optical Devices I (ASTROD I) mainly aims at testing relativistic gravity and measuring the solar-system parameters with high precision, by carrying out laser ranging between a spacecraft in a solar orbit and ground stations. In order to achieve these goals, the magnitude of the total acceleration disturbance of the proof mass has to be less than 10−13 m s−2 Hz−1/2 at 0.1 m Hz. In this paper, we give a preliminary overview of the sources and magnitude of acceleration disturbances that could arise in the ASTROD I proof mass. Based on the estimates of the acceleration disturbances and by assuming a simple controlloop model, we infer requirements for ASTROD I. Our estimates show that most of the requirements for ASTROD I can be relaxed in comparison with Laser Interferometer Space Antenna (LISA).Comment: 19 pages, two figures, accepted for publication by Class. Quantum Grav. (at press

    Two Mode Quantum Systems: Invariant Classification of Squeezing Transformations and Squeezed States

    Get PDF
    A general analysis of squeezing transformations for two mode systems is given based on the four dimensional real symplectic group Sp(4,\Re)\/. Within the framework of the unitary metaplectic representation of this group, a distinction between compact photon number conserving and noncompact photon number nonconserving squeezing transformations is made. We exploit the Sp(4,\Re)-SO(3,2)\/ local isomorphism and the U(2)\/ invariant squeezing criterion to divide the set of all squeezing transformations into a two parameter family of distinct equivalence classes with representative elements chosen for each class. Familiar two mode squeezing transformations in the literature are recognized in our framework and seen to form a set of measure zero. Examples of squeezed coherent and thermal states are worked out. The need to extend the heterodyne detection scheme to encompass all of U(2)\/ is emphasized, and known experimental situations where all U(2)\/ elements can be reproduced are briefly described.Comment: Revtex 37 pages, Latex figures include

    The Coherent State Representation of Quantum Fluctuations in the Early Universe

    Get PDF
    Using the squeezed state formalism the coherent state representation of quantum fluctuations in an expanding universe is derived. It is shown that this provides a useful alternative to the Wigner function as a phase space representation of quantum fluctuations. The quantum to classical transition of fluctuations is naturally implemented by decohering the density matrix in this representation. The entropy of the decohered vacua is derived. It is shown that the decoherence process breaks the physical equivalence between vacua that differ by a coordinate dependent phase generated by a surface term in the Lagrangian. In particular, scale invariant power spectra are only obtained for a special choice of surface term.Comment: 25 pages in revtex 3. This version is completely revised with corrections and significant new calculation

    Retrodictively Optimal Localisations in Phase Space

    Get PDF
    In a previous paper it was shown that the distribution of measured values for a retrodictively optimal simultaneous measurement of position and momentum is always given by the initial state Husimi function. This result is now generalised to retrodictively optimal simultaneous measurements of an arbitrary pair of rotated quadratures x_theta1 and x_theta2. It is shown, that given any such measurement, it is possible to find another such measurement, informationally equivalent to the first, for which the axes defined by the two quadratures are perpendicular. It is further shown that the distribution of measured values for such a meaurement belongs to the class of generalised Husimi functions most recently discussed by Wuensche and Buzek. The class consists of the subset of Wodkiewicz's operational probability distributions for which the filter reference state is a squeezed vaccuum state.Comment: 11 pages, 2 figures. AMS Latex. Replaced with published versio

    Operational Theory of Homodyne Detection

    Full text link
    We discuss a balanced homodyne detection scheme with imperfect detectors in the framework of the operational approach to quantum measurement. We show that a realistic homodyne measurement is described by a family of operational observables that depends on the experimental setup, rather than a single field quadrature operator. We find an explicit form of this family, which fully characterizes the experimental device and is independent of a specific state of the measured system. We also derive operational homodyne observables for the setup with a random phase, which has been recently applied in an ultrafast measurement of the photon statistics of a pulsed diode laser. The operational formulation directly gives the relation between the detected noise and the intrinsic quantum fluctuations of the measured field. We demonstrate this on two examples: the operational uncertainty relation for the field quadratures, and the homodyne detection of suppressed fluctuations in photon statistics.Comment: 7 pages, REVTe
    corecore