74 research outputs found

    Theory of the in-plane photoelectric effect in a two-dimensional electron system

    Full text link
    A new photoelectric phenomenon, the in-plane photoelectric (IPPE) effect, has been recently discovered at terahertz (THz) frequencies in a GaAs/Alx_xGa1x_{1-x}As heterostructure with a two-dimensional (2D) electron gas (W. Michailow et al., Science Advances, DOI: 10.1126/sciadv.abi8398). In contrast to the conventional PE phenomena, the IPPE effect is observed at normal incidence of radiation, the height of the in-plane potential step, which electrons overcome after absorption of a THz photon, is electrically tunable by gate voltages, and the effect is maximal at a negative electron "work function", when the Fermi energy lies above the potential barrier. Based on the discovered phenomenon, efficient detection of THz radiation has been demonstrated. In this work we present a detailed theory of the IPPE effect providing analytical results for the THz wave generated photocurrent, the quantum efficiency, and the internal responsivity of the detector, in dependence on the frequency, the gate voltages, and the geometrical parameters of the detector. The calculations are performed for macroscopically wide samples at zero temperature. Results of the theory are applicable to any semiconductor systems with 2D electron gases, including III-V structures, silicon-based field effect transistors, and the novel 2D layered, graphene-related materials.Comment: 21 pages, 15 figures, substantially revised improved versio

    Combined electrical transport and capacitance spectroscopy of a MoS2LiNbO3{\mathrm{MoS_2-LiNbO_3}} field effect transistor

    Get PDF
    We have measured both the current-voltage (ISDI_\mathrm{SD}-VGSV_\mathrm{GS}) and capacitance-voltage (CC-VGSV_\mathrm{GS}) characteristics of a MoS2LiNbO3\mathrm{MoS_2-LiNbO_3} field effect transistor. From the measured capacitance we calculate the electron surface density and show that its gate voltage dependence follows the theoretical prediction resulting from the two-dimensional free electron model. This model allows us to fit the measured ISDI_\mathrm{SD}-VGSV_\mathrm{GS} characteristics over the \emph{entire range} of VGSV_\mathrm{GS}. Combining this experimental result with the measured current-voltage characteristics, we determine the field effect mobility as a function of gate voltage. We show that for our device this improved combined approach yields significantly smaller values (more than a factor of 4) of the electron mobility than the conventional analysis of the current-voltage characteristics only.Comment: to appear in Applied Physics Letter

    Terahertz aperture SNOM mapping of metamaterial coupled resonators

    Get PDF
    Metamaterials have emerged as the basis of a novel optoelectronic platform operating in the terahertz (THz) range, due to their versatility and strong light-matter interaction. The necessary design of efficient modulators and detectors requires a detailed investigation of metamaterial resonances and their interplay with an active medium, e.g. graphene. An aperture-SNOM (a-SNOM) system based on picosecond THz pulses was used to investigate the spectral characteristics of a set of lithographically tuned metamaterial coupled resonators. This approach allowed the mapping of the supported E-field of each resonator a few microns from the device plane, yielding bonding and antibonding modes reminiscent of electromagnetic induced transparency

    Enhanced delivery and detection of terahertz frequency radiation from a quantum cascade laser within dilution refrigerator

    Get PDF
    We report on significant enhancements to the integration of terahertz (THz) quantum cascade lasers (QCL) and THz detection with a two-dimensional electron gas (2DEG) within a dilution refrigerator obtained by the inclusion of a multi-mesh 6 THz low-pass filter to block IR radiation, a Winston cone to focus light output, and gating the 2DEG for optimised sensitivity. We show that these improvements allow us to obtain a > 2.5 times reduced sample electron temperature (160 mK compared with 430 mK previously), during cyclotron resonance (CR) measurements of a 2DEG under QCL illumination. This opens up a route to performing sub-100 mK experiments using excitation by THz QCLs

    Metamaterial/graphene active terahertz modulators

    Get PDF
    Within the last years there has been a tremendous thrust into research and technology in the THz spectral region (broadly defined as 0.1-10 THz) mainly driven by the unique potential where this radiation finds applications in, such as imaging, spectroscopy and communication. In all these fields a fast, integrated and versatile platform for modulating light is required. Metamaterial/graphene devices fulfill all these requirements as their subwavelength nature lends itself naturally to strong light-matter interaction, and therefore highly efficient and miniaturized devices. Graphene's unique properties, e.g. the large carrier concentration modulation, provide a large degree of compatibility with several architectures which can be exploited in a range of modulation or detection schemes. Finally, metamaterial/graphene devices realize a fast, versatile platform, which can be easily scaled to other frequencies, and adapted into amplitude, frequency, polarization and phase modulators, as well as integrated detectors, for the next generation of wireless-communication
    corecore