150 research outputs found

    Bubble Pinch-Off in a Rotating Flow

    Get PDF
    We create air bubbles at the tip of a “bathtub vortex” which reaches to a finite depth. The bathtub vortex is formed by letting water drain through a small hole at the bottom of a rotating cylindrical container. The tip of the needlelike surface dip is unstable at high rotation rates and releases bubbles which are carried down by the flow. Using high-speed imaging we find that the minimal neck radius of the unstable tip decreases in time as a power law with an exponent close to 1/3. This exponent was found by Gordillo et al. [Phys. Rev. Lett. 95, 194501 (2005)] to govern gas flow driven pinch-off, and indeed we find that the volume oscillations of the tip creates a considerable air flow through the neck. We argue that the Bernoulli pressure reduction caused by this air flow can become sufficient to overcome the centrifugal forces and cause the final pinch-off

    Dynamics of particles floating on liquid flowing in a semicircular open channel

    Full text link
    The dynamic characteristics of surface-floating particles in liquids flowing in a two-dimensional, semicircular open channel is studied experimentally. For high visibility in the experiments, relatively large particles are employed whose particle-liquid density ratio is either equal to or less than unity. Particles of different size and geometry are tested in a water-glycerin mixture. A video camera traces the pathline of each particle from which the velocity and direction of particle motion are evaluated. Liquid velocity distribution is determined by hot-film anemometry. A modified dynamics (Basset-Boussinesq-Oseen) equation is derived and numerically solved by means of a finite-difference technique to determine fluid velocity. A new dimensionless parameter is disclosed which is pertinent to both particle geometry and fluid flow conditions. It correlates particle trajectory and velocity, trajectory dispersion and fluid-particle velocity ratio.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47062/1/348_2004_Article_BF00226574.pd

    Heat transfer in separated flows on the pressure side of turbine blades

    Get PDF
    Heat transfer in separated flows on the pressure side of a typical high lift turbine profile is numerically investigated by means of an in-house CFD code. The numerical code was first validated on attached flows in turbine blades. To obtain flow separation cases, the profile is subject to large negative incidences so that a separation bubble is obtained at the pressure side. The numerical results are compared to available experimental data for code validation. It is shown how local minima and maxima values of the heat transfer coefficient are related to the separation and reattachment points, where the velocity component perpendicular to the wall is shown to have a significant effect on the heat transfe

    How Fast It Can Stick: Visualizing Flow Delivery to Microtoroid Biosensors

    No full text

    Strömungssichtbarmachung

    No full text
    • …
    corecore