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Light impinging on an aircraft wing surface interacts with the shock waves that form
around it due to the high-speed flow and produces an oscillatory optical phenomenon com-
posed of image distortions or shadow patterns, visible from the airborne perspective under
particular observer, vehicle operation and illumination conditions. Analogously to traditional
experimental techniques of shock wave visualization, the phenomenon can in principle be repli-
cated computationally in its entirety, although the exact conditions that make it visible are
still unknown. From a virtual experiment, it remains to be established what can be inferred
about the shock wave and the trans-super sonic flow itself from the observed visual artifacts.
This paper develops a three-dimensional nonlinear ray equation solver to predict the light
propagation from the sun, through the refractive inhomogeneous density field acquired from a
two-dimensional computational fluid dynamics (CFD) simulation and assembled as a pseudo-
three-dimensional flow domain, to the physically-based reflective wing surface. Employing
the traditional linear ray tracing algorithm, the photon mapping rendering technique and a
simplified viewing system implementation, this computational tool is then used to assess the dif-
ferences in the scene illumination caused by the shock wave. The contrast between the reflected
radiance values, represented as a color triplet in the RGB space, considering the aerodynamic
inhomogeneous flow field and a fictitious homogeneous optical medium demonstrates that the
shock wave indeed induces radiometric disturbances. A strategically positioned and oriented
recording film is able to capture magnified deflections of light rays and samples of the density
of photons result in the reproduction of the shock wave’s shadow formation. Visualized as in
the shadowgraphy experiment or observed from a perspective around the aircraft wing, the
characteristics of the shadow pattern depend on the number of photons and the direction that
they are emitted from the light source.

I. Introduction
The interaction between sunlight and compressible flow gives rise to an optical effect on the aircraft wing related to

the presence of shock waves and the corresponding disturbed thermodynamic field. In the out-of-the-window view it is
possible to see some blurs or a pair of bright and dark stripes, attached to the wing surface and moving as the transonic
flight progresses (see videos: [1–3], with screenshots captured in Figure 1). However, these phenomena are only visible
under certain lighting conditions and from a favourable viewing position [2, 4].The question arises: what can be inferred
about the shock wave and the flow field itself from the observed shadow pattern and distortions?

Although in-flight shock wave visualization is relatively rare, the effect that a compressible flow field exerts over
light has already been extensively explored in aerospace research to generate images of aerodynamic features by means
of optical mechanisms. By transmitting a light beam through optically and thermodynamically inhomogeneous air in an
experiment, the resulting displacement, deflection angle or phase change of the light ray enabled the first visualization of
shock waves, considered until then invisible. Shadowgraph, schlieren and interferometer imaging represent, respectively,
these three classes of flow visualization methods [5]. Settles and Hargather [6] provided a comprehensive review of
the developments undergone by these optical techniques that have played a major role in "wind-tunnel testing and the
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Fig. 1 Image distortions (1a and 1c) and shadow pattern (1b) due to shock waves visible during transonic flight.
The images are from [1–3] and are in the public domain.

development of high-speed aircraft" [6]. More recently the invention of digital high-speed video cameras has enabled
the engineering of new flow visualization methods, such as the synthetic or background-oriented schlieren (BOS) [6].
This technique has been developed for in flight testing by NASA’s Armstrong Flight Research Center who have captured
impressive images with their Air-to-Air Background Oriented Schlieren (AirBOS) system [7].

From the advent of the computer, researchers started using the same principles of the traditional techniques in a
new approach to flow visualization, now performed entirely in a virtual environment with no need for experimental
apparatus, according to the chronological presentation provided by Havener [8]. Following the forward modelling
approach [9], CFD solvers with diversified accuracy and complexity handling capabilities have been used to model
various compressible flow phenomena, and the Computational Flow Imaging (CFI) science of "generating digital images
of theoretical fluid dynamic phenomena" "that simulate real observations" [8] has been applied alongside to model the
measurement process and, thus simulate a complete physical observation.

By evaluating and integrating functions of the index-of-refraction along the line of sight [10], using well known
numerical edge or discontinuity detection techniques [11], tracing light rays through the fluid flow domain and the optical
system [9, 12], or mapping the photons distribution after the tracing process [13], numerical analogous of schlieren,
shadowgraph and interferogram images were generated [9–14]. Assumptions regarding the light behaviour ranged from
minimal deflections and straight path perpendicular to the image plane [10], linear propagation within mesh elements
and refraction at respective boundaries captured by the Snell’s Law [12], to none at all and full governing equation
solution [9, 13]. These synthetic images enabled mainly the verification and validation of CFD and CFI simulations via
direct comparison to experimental images of the same nature, saving time and money that would otherwise be spent
with the planning, execution and evaluation of those experiments.

With the ongoing advancements in high-performance computing, CFI is currently still being further developed to not
only validate CFD and CFI codes via comparison with experimental data, but also provide an alternative to CFD post
processing, study and predict real fluid dynamics problems and plan and assess experimental methods [8]. Among other
advantages, the versatility of digital image processing, including options of computer zooming, perspective viewing,
domain isolation and picture treatment, attracts the researchers given the possibility of extraction of some additional
knowledge [8]. Nonetheless, there still exist a gap in the investigation and reproduction of the shadow pattern formation
over wings of aircraft in high-speed flight, due to the presence of shock waves.

The developments of CFI facilitated a numerical investigation in this direction [15]. Onnink [15] used a combination
of simplified two-dimensional ray tracing algorithm and transonic CFD model in an attempt to evaluate the behaviour of
sun light impinging on an airfoil after passing through a shock wave and to subsequently reproduce the shadow pattern
formed over the aerodynamic surface. The results of the study [15] showed that the characteristics of the shadows
depend on the flow conditions and on the properties selected for the rendering analysis. However an unique relation
between the light and shock wave properties could not be established, due to the limitations of the adopted approach.

Whilst answering the shock-shadow relation question is the longer term aim of this research programme, this
study firstly builds on the recommendations for further developments of the analysis [15] and addresses most of the
simplifying assumptions that limited the accurate representation and simulation of nature. The physical problem of
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interest is recognised as three-dimensional, as in reality, and a more accurate compressible, viscous and transient fluid
flow solution is predicted employing an open-source CFD software. The modelling of the light source, reflective surface
and viewing system is performed using the concept of photon map, physically-based properties of real materials and
a sensor-like image plane, respectively. A gradient-index ray tracing algorithm is developed to investigate the light
ray propagation and refraction from the emitting Sun to the wing, whereas the traditional linear method is applied to
evaluate the traversal from the reflective wing to the sensor. The geometrical optics field of study therefore provides the
required framework to construct a computer simulation of light and a possibly viable aerodynamic data analysis tool
stemming from digital image processing.

II. Flow Prediction
The computational fluid dynamics data is obtained through the open-source software OpenFOAM® [16] for transonic

flow over a NACA 0012 airfoil. This is a well documented uncambered symmetric aerodynamic shape and is available as
a standard tutorial case within OpenFOAM® package. The code solves the unsteady Reynolds Averaged Navier-Stokes
(RANS) compressible flow equations using a combination of the Pressure Implicit with Splitting of Operator (PISO)
and the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) iterative solvers, the so-called PIMPLE
(rhoPimpleFOAM) algorithm [17], with the solution iterated until a steady flow is reached. This scheme has stability
advantages with respect to the time step selection for the simulation. A k-Omega SST model is used to model turbulent
fluctuations in the flow [18].

In a quasi-2D mesh composed of 32480 points and 16000 cells, containing only a single subdivision in the span-wise
(third) dimension as requested by the software, the initial conditions of velocity (* = 277</B), temperature () = 298 )
and pressure

(
? = 105#/<2) are enforced at the farfield, whilst a boundary condition of the type wall, or no velocity,

is applied to the airfoil positioned at at an angle-of-attack of U = 0◦. From an imposed freestream Mach number of
" = 0.8, the steady state solution in terms of air density, shown in Figure 2, is stored.

Fig. 2 Steady state solution of transonic flow over a NACA 0012 airfoil in terms of air density.

A. Constrained Tetrahedralization
Focusing only on the region of interest, the upper left section of the domain containing the flow upstream and

over the upper surface of the airfoil including the shock wave, the air density values at the vertices of the quasi-2D
mesh are thereafter replicated in six layers oriented along the remaining coordinate direction. This new isolated
pseudo-three-dimensional flow domain composed of 41310 points then constitutes the basis for construction of a
Constrained Delaunay Tetrahedralization (CDT) containing 201600 cells, here implemented using a multi-stage process
involving Matlab®, Tetgen®, ParaView® and CGAL®. The use of constrained tetrahedralizations in computer graphics
has already been reported [19] and Tetgen® is usually the popular, if not only, choice of open source software available
for this meshing purpose. However, a script that performs data conversion between Tetgen® and CGAL®, the latter a
well-known computational geometry library, has never been made available. The current script will be made available
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for use as part of this research programme.

III. Photon Emission
Photons, the carriers of the light power or radiant flux (energy per unit time), are generated at the source location at

the upper limit of the flow domain, region strictly above the wing. Each light particle is assigned with an equal fraction
of the total power [20], a radiometric quantity (see section V) represented as a color triplet in the RGB space, each
element respectively capturing the lower (blue), middle (green) and upper (red) wavelengths of the visible spectrum,
enough to account for the spectral dependence of the illumination and map the spectral power distribution with regards
to a human observer, according to the tristimulus theory of color perception [21]. The photons originate at evenly
distributed positions along the x-coordinate direction and are emitted in a single global direction. This directional light
source approximation although non-physical is acceptable to model the Sun characteristics [20].

In the shock wave’s shadow nonlinear phenomenon, the drawback of employing a only traditional ray tracing
technique is the complexity or possibly even the inability of connecting the two stages of light propagation, from the
source to the surface and from the surface to the viewing system. Employing either the forward or the backward
approach, one would be faced with the same challenge of "given two points in space, find a curved ray that obeys the
underlying laws of nonlinearity and passes through the two defining points" [22]. In backward linear ray tracing, the
shadow rays originate at intersection points at the surface and are directed towards light sources, providing a useful test
for determination if this point is in shadow if the ray is blocked by another geometrical object. Given the nonlinearity,
this direction is not easily determined anymore, the shadow ray may not even exist and the shadowing effect is due to
light shift, instead of simple light blockage [22]. Therefore, radiometric variations would only be visible on the wing
provided that the CFD mesh density was sufficiently refined in both the flow field and the solid surface, in order to
capture detailed refractive shock and wing reflective surface shapes, and the sampling rate was accordingly defined to
detect the effect of these surfaces on light behaviour. Otherwise, a converged solution would be only characterised
by considerable variance, intrinsic to the method, making the shadow pattern negative and positive lighting peaks
indistinguishable and the emission of more light rays would only be a waste of computational effort.

The combination of ray tracing with the photon mapping concept [20] recovers the generality of the rendering
algorithm. Developed with the main goals of increased computational efficiency, complexity handling and noise
reduction in the image synthesis, photon mapping is still a transport algorithm based on ray-tracing, employing ray
geometrical optics to describe scattering and capable of sampling the continuous light from both ends of the light
propagation. The flexibility of bidirectional path tracing and the "decouple of the representation of the illumination
from the geometry" [20] are then attractive advantages, presenting the opportunity to explore the cached light paths and
resulting lighting over the wing from different perspectives, considering constraints in terms of light source and viewing
system and given a now consistent solution that will converge if the number of photons being emitted is increased. The
reconstruction of the illumination now using a statistical density estimation approach is the key to the shock wave’s
shadow simulation.

IV. Light Propagation and Refraction
The idea behind ray tracing has been used for a long time in optics to design lenses [23] through the analysis and

evaluation of the paths followed by light rays in optical systems. Following the same principles, a computer graphics
technique that adopts the same name has found its niche in the generation of digital or synthetic two-dimensional
pictures of the three-dimensional world [24]. This process has traditionally embedded the assumption that light rays
propagate in linear trajectories. When it comes to refraction this phenomena has been modeled simply by applying
Snell’s Law [25] at the boundaries of objects, or between different media of constant refractive index [26, 27].

However, in a gradient-index media the index-of-refraction is not constant or homogeneous, but varies continuously
in space [27]. This situation arises in compressible aerodynamics and light rays propagate along nonlinear trajectories
(curved paths) [27, 28]. In practice, it is usually impossible to accurately predict the profile of refractive index, reason
why the mathematical equation that governs the behaviour of light in optical media has to be solved in order to obtain
the light path, at least approximately.

A. Nonlinear Ray (or Photon) Tracing
Some authors attempt to simplify the ray tracing process by classifying distinctive types of optical property

distributions [23, 29, 30] or deriving analytical light ray paths [26, 27], however these studies make assumptions
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regarding the spatially varying media that are too restrictive. In more general physical simulations, the alternative is to
obtain the nonlinear light ray path via integration of the light ray equation coming from the geometrical optics domain. A
number of different numerical schemes appear in the literature [26], however most of the approaches involve a piecewise
linear approximation of the light rays [27]. This concerns an assumption of locally constant index-of-refraction within
each integration step, which constrains the step size required for accurate solution and can lead to high computational
costs [26].

This paper avoids any simplifying assumptions with respect to the refractive index of the media and only attempts to
model the light behaviour by solving the Ray Equation through coupled numerical gradient estimation, interpolation
and integration techniques based on an underlying discrete representation of the flow field domain.

B. Ray Equation
The ray equation is derived using Fermat’s Principle and Calculus of Variations [31] and is given by

3

3B

(
= (r) 3

®r
3B

)
= ∇= (r) (1)

The solutions of the ray equation (Equation 1) for an Isotropic Inhomogeneous Medium are the particular parametric
curves ®A (C) = 〈G(C), H(C), I(C)〉 that minimize the optical path length or, reciprocally, solve the variational calculus
problem by satisfying the Euler equations, therefore providing the paths adopted by the light rays in nonlinear media.

Treating a light beam as an electromagnetic wave propagation phenomenon through a fluid flow that is characterized
as isotropic inhomogeneous in terms of varying fluid density [5], the preliminary studies of Clausius and Mossotti and of
Lorentz and Lorenz [32] resulted in formulae, that relate the refractive index of the fluid to its density, according to the
properties of an electron, molecular constants and properties of the fluid and oscillatory features of the light considered.

Given that the refractive index of common gases is approximately equal to unity, these formulae can be further
simplified to the abbreviated Gladstone-Dale relation

= − 1 =  d (2)

where  is the Gladstone-Dale constant. Table 1 presents the dependence of this constant on the wavelength of light
across a range of values which includes the visible spectrum for air. As observed in Table 1, the wavelength of light
in and at the vicinity of the visible spectrum does not strongly influence the Gladstone-Dale constant’s value for the
air, and the average value of 0.2276

[
2<3/6

]
is used throughout the present work, instead of considering the mixture

composition of the gas as a means to estimate this value.

Table 1 Gladstone-Dale constant for air at T=288 [ ]

K
[
2<3/6

]
Wavelength[`<]

0.2239 0.9125
0.2250 0.7034
0.2259 0.6074
0.2274 0.5097
0.2304 0.4079
0.2330 0.3562

As detailed by Sakamoto [33], algorithms to approximately solve the Ray Equation can be developed based on a
change of the independent variable that describes the ray. For this transformation, a new variable, C, is written in terms
of the arc length along the ray or simply ray path, B, and a power of the refractive index, =: . One of the main references
in ray tracing methods for gradient-index media [28] concerns the case in which : = −1 and the new independent
variable is called the quasi-ray path [33].

Following Sharma et al. [28] the equation for C is

C =

∫
1
=
3B (3)

and hence 3C is given by

3C =
3B

=
(4)
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Then using these substitutions in Equation 1 yields a new system of two ordinary differential equations

32®A
3C2

= =∇ (=) = 1
2
∇

(
=2

)
(5)

3®A
3C
= ®) = = cos (U) ®8 + = cos (V) ®9 + = cos (W) ®: (6)

These equations can be solved iteratively to give the position of the light ray ®A and the tangent vectors ®) along its
path.

C. Adaptive Solution of the Ray Equation
Runge-Kutta (RK) methods have been used extensively in optics to solve the ray equation due to their computational

efficiency. In the widely cited paper by Sharma et al. [28], a simplified form of the standard fourth-order RK method
[34] was used, with the ray equation rewritten as a system of two first-order differential equations. The simplification
is possible due to the absence of a first derivative on the right hand side of the equation [35]. Alternative modified
methods, such as Runge-Kutta-Nyström (RKN) [36], can be applied directly to the second order equations, which
presents advantages in terms of computation time and memory requirements. The same characteristics that allows the
simplification of standard integration routines also simplifies the derivation of the composing coefficients of RKN
methods[36], a more general approach [37].

Although there exists a multitude of numerical integration schemes using the RKN approach [38–40], with different
formulae, orders of accuracy and advantages depending on the aimed application, a more traditional and general
work is due to Fehlberg [36]. Therefore, the scheme employed to integrate the ray equation in this research is the
Runge-Kutta-Nyström 4(5) presented by Fehlberg [36], referred to in the rest of this paper as the Runge-Kutta-Fehberg
(RKF) method.

Described as embedded formulas, this method provides two approximations with fourth and fifth orders of accuracy,
respectively, using the same function evaluations for computational efficiency. The higher-order approximation is used to
advance the subsequent steps,technique known as local extrapolation, and the difference between the two approximations
is interpreted as an estimation of the local error in the position of the ray at each step. This error can then be used to
establish an adaptive integration scheme with an automatic step size control and adjustment procedure, based on a preset
error tolerance [41].

Alongside the embedded Runge-Kutta formulas available in [36], the adaptive integration setup also consists of
a prescribed tolerance of )$! = 1e−9 for comparison with the local error. From a starting step size of ℎ0 = 0.001,
proportional to the domain discretization, the step size control procedure automatically adjusts it based on the ratio
between the tolerance and the truncation error and respective exponent of 1/5, a safety factor of 5 02 = 0.9 to increase
the probability of acceptance of the error (and consequently the size) on the next step and control factors of 5 02<8= = 0.1
and 5 02<0G = 1.5 to contain the rate of decrease and increase of the size, respectively, according to suggestions of
Hairer et al. [37]. Moreover, as also advised in [37], after every step size rejection the control factor 5 02<0G is returned
to the unit, considering that the size has to be decreased.

D. Gradient Estimation and Interpolation
When using the RKF method to solve the ray equation, for each integration step the gradient of the refractive

index of the air squared, ∇=2, has to be evaluated at five interdependent points along the light ray path. However, the
calculation of ∇=2 has not been addressed directly with respect to ray tracing algorithms [29], but rather in terms of
specific applications in the fields of CFD and computer graphics. In ray tracing, accuracy and efficiency are imperative
in the gradient vector reconstruction and interpolation processes in order to achieve a satisfactory solution of light
behaviour within the gradient-index domain. Gradient evaluation can affect directly the speed and complexity of the
integration scheme. This is especially so when the refractive index distribution is provided as a discrete data set [29],
which is the case in the present study. If this optical property of the fluid is available as a set of vertex-based mesh
values then the gradient field is estimated in two stages: first, ∇=2 is evaluated at the discrete data set vertex locations
and, secondly, the value of ∇=2 at every point required to trace a light ray is then found via interpolation.

The most cited methods for gradient vector estimation are variants of the Green-Gauss (GG) [42, 43] and Least
Squares (LSQR) [44–46]. In the present research, the GG and LSQR linear and quadratic (unweighted) vertical
regressions (LVR and QVR, respectively) have been compared. Specific attention has been paid to accuracy and the
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effects that the underlying data field and the local characteristics of the mesh (cell size, orientation and skewness) have
over the general consistency of the methods. Based on this work, the LSQR QVR was selected for vertex-based gradient
vector estimation, due to its robustness and has been coded according to the formulae given by Barth [44].

To obtain the gradient vector at any non-vertex point required the vector is interpolated. Given the importance of
the accuracy and robustness of this interpolation, a number of the methods were evaluated: LSQR QVR applied to
a cell and its respective neighbouring elements; Nearest-Neighbour (NN); Partition of Unity (PU) and Radial Basis
Function (RBF). A simple analysis of performance led to the selection of RBF for gradient vector interpolation, due to
its consistent continuity, and accuracy of interpolated values. The ALGLIB® C++ library then provided the respective
algorithm implemented [47].

The setup of the ALGLIB® algorithm to interpolate the gradient vector of the index-of-refraction squared in spatial
locations scattered within the three-dimensional unstructured mesh involves the tuning of three parameters: the radius
of the Gaussian basis function or "size of the sphere of influence of the points with known function values", the number
of layers through which the radius will be successively decreased to build a hierarchy of models and the regularization
coefficient for noise smoothing control [47].

Taking into consideration the exact reproduction of the input data and fast RBF model construction and interpolation
evaluation, the radius is then selected to be equal to the average of the mean distance of each vertice’s nearest neighbors,
with five layers and no smoothing. Although not exactly following the recommendations available in [47], previous
interpolation test performed with the proposed setup provided to be enough for the current analysis.

E. Boundary conditions
Additional conditions are needed during gradient reconstruction to ensure the correct physical behaviour of light

rays at boundaries such as the solid surface and the farfield. Flags are set to identify if the vertices, facets and cells of
the mesh pertain either to the interior of the domain or to one of the boundaries. For cells at the farfield, the cell has
fewer neighbours and thus the number of interior data points used to estimate the gradient vector is a naturally lower
which can cause gradient estimation errors. This issue is overcome by increasing the number of neighbouring cells
used in gradient estimation, i.e. using information from neighbours of neighbours. At a solid surface boundary it is
important to identify when the integration step from the fluid domain leads to a point inside the solid surface and to treat
gradient estimation differently in the vicinity of the body. This is achieved by using halo cells within the solid surface in
which the density value is mirrored, a process similar to that used in many cell-centred CFD codes to enforce boundary
conditions. This enforces a zero density gradient along the normal at the solid surface. This is a reasonable assumption
for the present investigations when it is assumed that there is no significant heat transfer in this region.

F. Automatic Discontinuity Detection and Integration Refinement
The focus of this paper is on ray tracing for light passing through a shock wave or waves that form in high-speed flow

over aerodynamic bodies. For much of the flow field the variations in density are negligible and the high density gradient
region is confined to a, usually, thin region around the shock. This specific characteristic of high speed compressible
flow is challenging for ray tracing solvers. The numerical integration scheme and its automatic step size control and
adjustment procedure only handles local domain information, which can cause an issue when two adjacent integration
points fall in the regions upstream and downstream of the shock wave where local variations in density at each point are
very low, despite the difference between the density values at the two points being high. The zero gradient of density
condition in the regions around each integration point leads to an integration truncation error in the RKF scheme that is
below the preset tolerance. Thus the tracing continues without reduction of the step size, missing the shock discontinuity
and, consequently, the physical light ray bending.

Therefore, a modified methodology has been implemented to ensure that the dramatic density change that occurs
across a shock wave, a fundamental trait of this type of compressible flow phenomena [5], is detected and the step size
reduced accordingly. The air density is checked continuously along a light ray path, by interpolating at the beginning
and end of every step, with the percentage change between the two values compared to a preset threshold of density
variation. If the percentage change exceeds the threshold, the shock density discontinuity has been clearly missed within
the step. It is now detected and the current step is rejected as too large. A bisection approach is then taken to reduce the
step so that a suitable smaller step size is identified, which yields a density percentage change across the step that lies
within the threshold.

This corrects the integration so that both ends of the step are on the same side of the shock as the origin of the
cast light ray. The new smaller step size is used to advance the numerical integration and provides a suitable level of
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refinement across the shock wave. The interpolation of the air density along the integration path is performed using a
Hyperplane fitting approach. This process is efficient even on unstructured polygonal meshes, which is a key requirement
due to the number of times this interpolation is performed. The logic of the procedure is explained in Figure 3.

Fig. 3 Schematic of automatic discontinuity detection and integration refinement methodology.

G. Intersection of Light Rays with the Wing
The point at which a light ray leaves the flow domain and enters the solid surface during a step of the RKF scheme

is detected using an internal function of the CGAL® library [48], which queries if a certain point is located inside or
outside the constrained tetrahedralization. In order to obtain accurate results for the position of the intersection between
a single light ray and the solid surface, the nonlinearity of the light ray path has to be accounted for since the density
gradients in the boundary layer adjacent to the surface are high.

Following the technique devised by Fine [49] for Runge-Kutta-Nyström methods, the solution and its first and
second-order derivatives at the beginning and end of an integration step are used to construct interpolation polynomials,
or interpolants, a continuous intermediate trajectory between integration points. The ray position variable is then
evaluated backwards, starting from the last computed integration point until it reaches the boundary between the
aerodynamic body and the fluid flow. When this condition is established, the point is then considered to be inside the
constrained tetrahedralization. The intersection between the light ray and the object is thus determined, along with the
ray direction variable and the mesh cell in which the light ray hit the surface. This technique does not result in additional
expensive computations, since all the information needed to compose the coefficients of the polynomials derive from the
integration step, and the accuracy of the interpolants is relatively close to that of the inputs used in its derivation [49].

H. Photon Storing
When a light ray intersects the wing, the hit position and the incident direction (see subsection IV.G) along with the

fraction of the emitted light power transported by the photon are stored in an exclusive data structured, named Photon
Map [20]. As described by Jensen [20], this cached flux distribution can subsequently be used to evaluate both the
incoming and the reflected lighting of the wing surface, through statistical analysis of the respective energy density.

V. Light Reflection
After being emitted from the directional light source and traced through the gradient-index medium, the photons

interact with the wing and are either reflected or absorbed [20] (conductors - metals - "don’t transmit light, but some of the
incident light is absorbed by the material and turned into heat" [21]). In order to perform a physically-based simulation
of light reflection from the wing, which together with the refraction that previously takes place are "macroscopic
manifestations of scattering occurring on a submicroscopic level" [25], and accurately predict a realistic synthetic image
that represents the shock wave’s shadow scene, radiometry and respective electromagnetic radiation variables and
principles are employed.
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Forming the basis of rendering and global illumination algorithms [20, 21, 50], the radiance, or energy arriving
at or leaving a point on a surface per unit time per unit area and per unit solid angle, is the variable of interested to
be computed at the locations hit by the photons. Differently from the total flux or power emitted from the source and
propagated via the photons, the radiance embodied by light rays change during refraction [20] and can be defined
anywhere in the domain [50], which allows its evaluation on the wing surface itself or on a recording device, hence the
availability of forward and backward ray tracing techniques.

As in the nonlinear photon tracing stage,the nature of light is again treated from the geometrical optics perspective,
i.e. considering the dimension of the physical problem (shock wave formation over a wing) much larger than the light’s
wavelength [21, 25]. This way, the radiant energy behaviour at reflection is assumed to be linear, energy conserving and
in the steady state [21], and diffraction and interference effects are neglected.

A. Reflection Equation
The reflection model thus evaluates the integral of the incident radiance (!8) on a point (?), from all the directions

(\8 , ®l8 ) in the hemisphere above it, and provides the radiance exiting back towards the domain (!>) in a certain direction
( ®l> ), as depicted in the so-called Reflection Equation [20, 21, 50], written as

!> (?, ®l> ) =
∫

2c+
5A (?, ®l8 , ®l> ) [!8 (?, ®l8 ) 2>B\83l8] (7)

The variations of the wing visual appearance based on the directions that it is being lightened and viewed from
are intrinsically present on the dependence of the radiances on these directions and, more importantly, on the formal
abstraction that describes how a surface made of a certain material reflects light, the Bidirectional Reflectance Distribution
Function or simply BRDF ( 5A ). Moreover, just as the illumination coming from light source, the spectral dependence of
the reflected light is accounted for by representing both radiances and BRDFs also as colors in the RGB space. As
shown in Equation 7, the BRDF is therefore the constant of proportionality between incident and exitant radiances.

B. Physically-Based Rendering
BRDFs formulae are devised from various types of sources, including experimental tests applied to real materials,

pure qualitative analysis and description of the scattering phenomenon or even from a detailed wave or geometric optics
framework, thus ranging in the level of complexity from tabular and readily available data to approximate or complex
equations and respective solution procedures [21]. However, in order to be consider physically-based, the BRDF must
not be composed only by simple perfect (ideal) diffuse or perfect specular components [20], but a combination of these
two, glossy specular and retro-reflection, and possibly consider effects of anisotropy [21]. In addition, these function
must embed the energy conservation principle and are usually based on the concept of microfacets [20, 21, 51].

An approach based on the geometric optics field of study, the microfacet surface model, as the name suggests,
consider it to be composed of an statistical distribution of microscopic perfectly reflective mirrors [21, 51]. Each facet
individual behaviour then contributes to the overall surface reflection and depend on, primarily, the facet set alignment
or, in other words, the microscopic roughness of the surface [21, 51]. It also depends on local lighting effects, such as
occlusion, shadowing and interreflection between facets [21] and on the amount of the incoming energy that is actually
reflected, instead of absorbed or transmitted, distinguishing thus dielectric and conductor materials [51].

One of the most recent [21] microfacet models is due to Walter et al. [52], implemented in the present study. For
the Fresnel term (�), distribution (�) and geometry (�) functions, which takes into account all the above-mentioned
factors that the BRDF depend on, the Schlick approximation with aluminium base reflectivity at normal incidence, the
Trowbridge-Reitz GGX type and the Smith’s method with a combination of Schlick-Beckmann and GGX approximations
are respectively used, following the didactic description provided by Vries [51]. The specific details of the model
are thoroughly explained in [51, 52] and included references and are outside the scope of this paper. Using this
physically-based BRDF the wing is therefore treated as a pure reflective material.

VI. Image Synthesis
The photon map itself and its energy distribution data already presents relevant information regarding the global

illumination of the scene: the indicative of existence of a shadow pattern on the wing surface given by the shift in
concentration of particles in between certain adjacent regions, in contrast to rest of the surface. However, the map lacks
the phenomenological and perceptual aspects of radiometry, "the study of the propagation of electromagnetic radiation
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in an environment" [20], and it does not ensure the representation of the shock wave’s shadow as an observable feature.
Similarly, the much easier estimation of irradiance (compared to radiance) by regarding the wing as a light sensor still
wouldn’t allow the reproduction of this image generated based on the incident flux density per unit surface area [50] in
reality and, consequently, the validation of the virtual experiment would not be possible.

Therefore, the photon map has to be visualized via reflected radiance estimation [20]. In order to compute this
radiometric quantity (!A ) at any point on the surface, the Reflection Equation (Equation 7) is rewritten in terms of the
irradiance [20]. The incoming flux (ΔΦ) density is then approximated using the nearest neighbor statistics method,
assuming an sphere of radius A around the point of interest G with  photons within it, and finally multiplied by the
BRDF (subsection V.B), as presented in

!A (G, ®l> ) ≈
1
cA2

 ∑
?=1

5A (G, ®l8 , ®l> ) ΔΦ? (G, ®l8 ) (8)

A. Viewing System
Employing initially only forward ray tracing from the sun towards the wing, the radiance could then be estimated by

considering a recording film shaped exactly as the wing and positioned right outside its boundary, in a way that all the
reflection occurs in the directions normal to the surface and the reflected light rays only traverse an infinitesimal distance
until they reach the film. This case is analogous to the wing regarded as a light sensor previously mentioned, although
now it is considered to be sensitive to reflected radiance. However, an analysis of the lighting of the wing surface
through this approach demonstrates that the degree of light rays deflection at the surface is not enough to produce a
synthetic shadow and the noise in the resulting images, inherent to ray-tracing methods, is usually of the same order of
magnitude than the expected disturbances in the radiance distribution.

The subsequent step in the viewing system development, although still simplified, is the positioning of the recording
film, now appropriately defined as an image plane, a certain distance away from the boundaries of the domain, either
farfield or solid surface. Inspired by the shadowgraphy experimental technique, by allowing the reflected light rays
to travel further from the hit locations and measuring the contrast in the pixels, or difference between the radiance
values computed considering homo and inhomogeneous refractive-index fields, the deflections become much more
pronounced and a considerable difference is observable in the computational image. A practical viewing system (virtual
pinhole camera [50]) and the backward ray tracing process usually from the eye point passing through the pixels to the
wing considering nonlinearities is not yet implemented in the present study. Instead, as traditionally applied to the
visualization of photons maps [20], a cheaper linear ray tracer is used to track the light back towards the pixels, in a
forward manner. The linear traversal is true in the case of simulations of shadowgraphs [5], in which the light travels
outside the wind tunnel in homogeneous air, but only an approximation for the case of real shock wave’s shadow, where
secondary refractions would occur. The image plane is oriented in the perfect mirror reflection direction of the linear
light rays case, thus sensing any slight variation cause by the shock waves.

VII. Results
A simulated shadowgraph of the NACA0012 airfoil at a freestream Mach number of 0.8 is presented on Figure 4.

Only from the minimal 5000 initial photons emitted from the source it is already possible to visualize the clear deflection
of those traversing the shock wave towards downstream of it, generating a bright spot at the location where they reach
the recording film and a dark spot where they were originally directed to. This can be further confirmed by locating the
foot of the shock wave, in the space between the x-coordinates equal to 0.6 and 0.7 in which there is a strong density
gradient, and relating this position to the line of demarcation between the shadow and lighting pattern. The effect that
the rendering parameters selection has over the quality of the synthesized image is evident in the final color computed for
the pixels, some of which are distinguishable in the shadowgraph. Increasing the number of emitted photons, reducing
the pixel size, allowing for more photons to be used in the density estimation for radiance computation or even applying
filters for noise reduction and rendering smoothing can improve the appearance of the synthetic shadowgraph.

The number of emitted photons affects the image generation only to a certain extent. Although a very large number
of photons constituting the light is desirable from the point of view of accurate density estimation, allowing the largest
possible sample size and smallest possible sampling area, it is still an averaging statistical process. Figure 5 shows
the contrast at the image plane for different numbers of photons traced from the source aligned with the y-coordinate
direction, i.e. vertically oriented towards the wing. The contrast is calculated by the difference between the radiance
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Fig. 4 Simulated shadowgraph of NACA 0012 at Mach 0.8.

values computed in two parallel simulations, one in an homogeneous optical medium (no flow nor shock wave) and the
other concerning the aerodynamic test case. As it can be seen on the four lower plots, the emission of more than 103

photons provides only slight improvements in the colors estimation, smoothing out possible discontinuities in the values
computed and numerical noise, compared to the four upper plots of reduced number of photons, where the progressive
convergence in terms of density estimation and radiance computation is verified.

Fig. 5 Convergence of contrast due to increase number of emitted photons.

The Snell’s Law of Refraction [25] prescribes the angle that a light ray will leave one side of the discontinuity between
two different refractive index media based on the angle that it hits the other side. Analogously, the characteristics of the
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shadow pattern are expected to depend on the direction of emission of the photons from the light source. To evaluate
such dependence, light rays were cast at angles of ±20◦, ±15◦, ±10◦, ±5◦ and 0◦ with respect to the y-coordinates
direction or vertical and the resulting contrasts in the wing surface section are presented in Figure 6. Considering a
clockwise rotation of the light rays from −20◦ to +20◦, it is possible to realize that light rays that reach the shock surface
with a more perpendicular orientation (at the lowest negative angles) produce shallow valleys and short peaks in the
contrast curve, which translates to weak dark and bright spots in the synthetic shock wave’s shadow image. As the light
rays direction roughly aligns with the shock wave curvature (at zero and lowest positive angles), a grazing incidence
occurs and the highest values of light deflection induce stronger shadow patterns, or deepest valleys and tallest peaks in
the curves.

Fig. 6 Influence of light source direction over the resulting shadow pattern.

Given the photon density convergence study and the light source direction dependence analysis previously presented,
the resultant shadow pattern formed over the wing assuming an emission of 1000 photons at the angle of 0◦ is shown on
Figure 7.

Fig. 7 Synthetic shock wave’s shadow pattern over a NACA 0012 aerodynamically-shaped wing.
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A. Discussion and Future Work
In this study, we have successfully designed a computational tool that employs carefully selected and efficient

numerical methods to accurately simulate the behaviour of light within a compressible high-speed flow and synthesize
images that exhibit the sought after effect, the shadow pattern produced by shock waves. This virtual experimental
environment is the initial step towards establishing a relationship between aerodynamic and light phenomena and
subsequently confirming the feasibility of extracting shock wave knowledge from observed shadows.

Even in this partial stage of development, the tool already provides researchers in Aerospace with the possibility of
reproducing shock wave’s shadow formation and visualizing it either from a wind tunnel or an airborne perspective,
i.e. evaluating the resulting contrast on an image plane that can mimic a shadowgraph setup or a simplified recording
device. The understanding that the nonlinearity characteristic of the light and shock wave interaction phenomenon
requires the combination of ray tracing sampling-based technique and photon mapping density-estimation concept, and
the realization that a strategic image plane position a certain distance from the region of interest reduces the exposition
to which it is subjected and lead to enhanced light rays deflections, were the two main achievements that enable the
visualization of shadow patterns at this stage.

To the best of our knowledge, this is the first published work to attempt to replicate the shock wave’s shadow visualized
in-flight. The majority of the studies in the field of computational flow imaging pursue the modelling of the optical
setup of traditional flow visualization techniques, such as shadowgraphy and schlieren. However, without recurring to
expensive and sophisticated resources, the methodology here developed is already able to simulate shadowgraphs and
predict illumination aspects of the phenomenon that can happen in general transonic flight. This strongly suggests that
the remaining details to be modelled are achievable and that the shock wave-shadow link is feasible, though still to be
determined.

The viewing system modelled as a recording film exposed to a fictitious homogeneous optical medium is currently
the major simplification of the approach. Without the implementation of a virtual camera and the nonlinear backward
photon tracing process, the tool is still not able to fulfil all the requirements for reproducing every single aspect of the
shadow visualization, identically to in reality. Moreover, the simulation of the phenomenon depends on the choices
made with respect to parameters that control each and every operation of the numerical methods, from the CFD mesh
density and solution, to light source and viewing system positioning and orientations, integration and interpolation
tuning and final rendering characteristics. Therefore, an analysis of influence of all these factors on the final shadow
image generated, will demand the application of acceleration techniques and possibly graphics hardware resources.

Future work will concern the practical modelling of the viewing system and subsequently include convergences
analysis in terms of the CFD mesh and shock wave solution and again number of photons emitted and used in the density
estimation. Although not shown here, the prediction of light propagation and refraction using the three-dimensional
ray equation solver has already been validated in simple cases of refraction between two different media, analytically
determined via the Snell’s Law of Refraction. However, the prediction of light reflection through BRDFs and image
synthesis process exploiting the photon map distribution have only been verified in the shadow images. Shadowgraph
setups and respective images available in the literature could then be used to validate these two modules through direct
comparison with simulated shadowgraphs. It is exactly the possibility of comparison between a real shadow recorded
in-flight, an artificial shadow generated in a wind tunnel experiment and the computational shadow synthesized by the
present methodology that governs the interests of this research, as either of the images and processes involved could be
validated, alongside the referred study of shock waves from respective shadows. After all, as Havener wisely remembers,
"a picture is worth a thousand words" [8] and when ready it will prove itself valuable to the whole scientific community.
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