272 research outputs found

    Standardized image quality for 68Ga-DOTA-TATE PET/CT

    Get PDF
    Background: Positron emission tomography (PET) imaging with 68Gallium labeled somatostatin analogues (68Ga-DOTA-SSA) plays a key role in neuroendocrine tumor management. The impact of patient size on PET image quality is not well known for PET imaging with 68Ga-DOTA-SSA. The aim of this study is to propose a dose regimen based on patient size that optimizes image quality and yields sufficient image quality for diagnosis. Methods: Twenty-one patients (12 males, 9 females) were prospectively included for 68Gallium-DOTA-Tyr3-Octreotate (68Ga-DOTA-TATE) PET/CT, which was acquired in whole body list mode using 6 min per bed position (mbp). The list-mode events were randomly sampled to obtain 1 to 6 mbp PET reconstructions. For semi-quantitative assessment of image quality, the signal-to-noise ratio (SNR) was measured in the liver. The SNR normalized (SNRnorm) for admini

    Requirement of a Membrane Potential for the Posttranslational Transfer of Proteins into Mitochondsria

    Get PDF
    Posttranslational transfer of most precursor proteins into mitochondria is dependent on energization of the mitochondria. Experiments were carried out to determine whether the membrane potential or the intramitochondrial ATP is the immediate energy source. Transfer in vitro of precursors to the ADP/ATP carrier and to ATPase subunit 9 into isolated Neurospora mitochondria was investigated. Under conditions where the level of intramitochondrial ATP was high and the membrane potential was dissipated, import and processing of these precursor proteins did not take place. On the other hand, precursors were taken up and processed when the intramitochondrial ATP level was low, but the membrane potential was not dissipated. We conclude that a membrane potential is involved in the import of those mitochondrial precursor proteins which require energy for intracellular translocatio

    The importance of crop growth modeling to interpret the Δ14CO2 signature of annual plants

    Get PDF
    [1] The 14C/C abundance in CO2(¿14CO2) promises to provide useful constraints on regional fossil fuel emissions and atmospheric transport through the large gradients introduced by anthropogenic activity. The currently sparse atmospheric ¿14CO2 monitoring network can potentially be augmented by using plant biomass as an integrated sample of the atmospheric ¿14CO2. But the interpretation of such an integrated sample requires knowledge about the day¿to¿day CO2 uptake of the sampled plants. We investigate here the required detail in daily plant growth variations needed to accurately interpret regional fossil fuel emissions from annual plant samples. We use a crop growth model driven by daily meteorology to reproduce daily fixation of ¿14CO2 in maize and wheat plants in the Netherlands in 2008. When comparing the integrated ¿14CO2 simulated with this detailed model to the values obtained when using simpler proxies for daily plant growth (such as radiation and temperature), we find differences that can exceed the reported measurement precision of ¿14CO2(~2‰). Furthermore, we show that even in the absence of any spatial differences in fossil fuel emissions, differences in regional weather can induce plant growth variations that result in spatial gradients of up to 3.5‰ in plant samples. These gradients are even larger when interpreting separate plant organs (leaves, stems, roots, or fruits), as they each develop during different time periods. Not accounting for these growth¿induced differences in ¿14CO2 in plant samples would introduce a substantial bias (1.5–2¿ppm) when estimating the fraction of atmospheric CO2 variations resulting from nearby fossil fuel emission

    Normal imaging findings after aortic valve implantation on 18F-Fluorodeoxyglucose positron emission tomography with computed tomography

    Get PDF
    Background: To determine the normal perivalvular 18F-Fluorodeoxyglucose (18F-FDG) uptake on positron emission tomography (PET) with computed tomography (CT) within one year after aortic prosthetic heart valve (PHV) implantation. Methods: Patients with uncomplicated aortic PHV implantation were prospectively included and underwent 18F-FDG PET/CT at either 5 (± 1) weeks (group 1), 12 (± 2) weeks (group 2) or 52 (± 8) weeks (group 3) after implantation. 18F-FDG uptake around the PHV was scored qualitatively (none/low/intermediate/high) and quantitatively by measuring the maximum Standardized Uptake Value (SUVmax) and target to background ratio (SUVratio). Results: In total, 37 patients (group 1: n = 12, group 2: n = 12, group 3: n = 13) (mean age 66 ± 8 years) were prospectively included. Perivalvular 18F-FDG uptake was low (8/12 (67%)) and intermediate (4/12 (33%)) in group 1, low (7/12 (58%)) and intermediate (5/12 (42%)) in group 2, and low (8/13 (62%)) and intermediate (5/13 (38%)) in group 3 (P = 0.91). SUVmax was 4.1 ± 0.7, 4.6 ± 0.9 and 3.8 ± 0.7 (mean ± SD, P = 0.08), and SUVratio was 2.0 [1.9 to 2.2], 2.0 [1.8 to 2.6], and 1.9 [1.7 to 2.0] (median [IQR], P = 0.81) for groups 1, 2, and 3, respectively. Conclusion: Non-infected aortic PHV have similar low to intermediate perivalvular 18F-FDG uptake with similar SUVmax and SUVratio at 5, 12, and 52 weeks after implantation

    Assessing fossil fuel CO_2 emissions in California using atmospheric observations and models

    Get PDF
    Analysis systems incorporating atmospheric observations could provide a powerful tool for validating fossil fuel CO_2 (ffCO_2) emissions reported for individual regions, provided that fossil fuel sources can be separated from other CO_2 sources or sinks and atmospheric transport can be accurately accounted for. We quantified ffCO_2 by measuring radiocarbon (^(14)C) in CO_2, an accurate fossil-carbon tracer, at nine observation sites in California for three months in 2014–15. There is strong agreement between the measurements and ffCO_2 simulated using a high-resolution atmospheric model and a spatiotemporally-resolved fossil fuel flux estimate. Inverse estimates of total in-state ffCO_2 emissions are consistent with the California Air Resources Board's reported ffCO_2 emissions, providing tentative validation of California's reported ffCO_2 emissions in 2014–15. Continuing this prototype analysis system could provide critical independent evaluation of reported ffCO_2 emissions and emissions reductions in California, and the system could be expanded to other, more data-poor regions

    Identification of Hypoxia-Regulated Proteins Using MALDI-Mass Spectrometry Imaging Combined with Quantitative Proteomics

    Get PDF
    Hypoxia is present in most solid tumors and is clinically correlated with increased metastasis and poor patient survival. While studies have demonstrated the role of hypoxia and hypoxia-regulated proteins in cancer progression, no attempts have been made to identify hypoxia-regulated proteins using quantitative proteomics combined with MALDI-mass spectrometry imaging (MALDI-MSI). Here we present a comprehensive hypoxic proteome study and are the first to investigate changes in situ using tumor samples. In vitro quantitative mass spectrometry analysis of the hypoxic proteome was performed on breast cancer cells using stable isotope labeling with amino acids in cell culture (SILAC). MS analyses were performed on laser-capture microdissected samples isolated from normoxic and hypoxic regions from tumors derived from the same cells used in vitro. MALDI-MSI was used in combination to investigate hypoxia-regulated protein localization within tumor sections. Here we identified more than 100 proteins, both novel and previously reported, that were associated with hypoxia. Several proteins were localized in hypoxic regions, as identified by MALDI-MSI. Visualization and data extrapolation methods for the in vitro SILAC data were also developed, and computational mapping of MALDI-MSI data to IHC results was applied for data validation. The results and limitations of the methodologies described are discussed. 2014 American Chemical Societ

    An increased response to experimental muscle pain is related to psychological status in women with chronic non-traumatic neck-shoulder pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neck-shoulder pain conditions, e.g., chronic trapezius myalgia, have been associated with sensory disturbances such as increased sensitivity to experimentally induced pain. This study investigated pain sensitivity in terms of bilateral pressure pain thresholds over the trapezius and tibialis anterior muscles and pain responses after a unilateral hypertonic saline infusion into the right legs tibialis anterior muscle and related those parameters to intensity and area size of the clinical pain and to psychological factors (sleeping problems, depression, anxiety, catastrophizing and fear-avoidance).</p> <p>Methods</p> <p>Nineteen women with chronic non-traumatic neck-shoulder pain but without simultaneous anatomically widespread clinical pain (NSP) and 30 age-matched pain-free female control subjects (CON) participated in the study.</p> <p>Results</p> <p>NSP had lower pressure pain thresholds over the trapezius and over the tibialis anterior muscles and experienced hypertonic saline-evoked pain in the tibialis anterior muscle to be significantly more intense and locally more widespread than CON. More intense symptoms of anxiety and depression together with a higher disability level were associated with increased pain responses to experimental pain induction and a larger area size of the clinical neck-shoulder pain at its worst.</p> <p>Conclusion</p> <p>These results indicate that central mechanisms e.g., central sensitization and altered descending control, are involved in chronic neck-shoulder pain since sensory hypersensitivity was found in areas distant to the site of clinical pain. Psychological status was found to interact with the perception, intensity, duration and distribution of induced pain (hypertonic saline) together with the spreading of clinical pain. The duration and intensity of pain correlated negatively with pressure pain thresholds.</p

    Proteome analysis of human gastric cardia adenocarcinoma by laser capture microdissection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incidence of gastric cardiac adenocarcinoma (GCA) has been increasing in the past two decades in China, but the molecular changes relating to carcinogenesis have not been well characterised.</p> <p>Methods</p> <p>In this study, we used a comparative proteomic approach to analyse the malignant and nonmalignant gastric cardia epithelial cells isolated by navigated laser capture microdissection (LCM) from paired surgical specimens of human GCA.</p> <p>Results</p> <p>Twenty-seven spots corresponding to 23 proteins were consistently differentially regulated. Fifteen proteins were shown to be up-regulated, while eight proteins were shown to be down-regulated in malignant cells compared with nonmalignant columnar epithelial cells. The identified proteins appeared to be involved in metabolism, chaperone, antioxidation, signal transduction, apoptosis, cell proliferation, and differentiation. In addition, expressions of HSP27, 60, and Prx-2 in GCA specimens were further confirmed by immunohistochemical and western blot analyses.</p> <p>Conclusion</p> <p>These data indicate that the combination of navigated LCM with 2-DE provides an effective strategy for discovering proteins that are differentially expressed in GCA. Such proteins may contribute in elucidating the molecular mechanisms of GCA carcinogenesis. Furthermore, the combination provides potential clinical biomarkers that aid in early detection and provide potential therapeutic targets.</p

    Assessing fossil fuel CO_2 emissions in California using atmospheric observations and models

    Get PDF
    Analysis systems incorporating atmospheric observations could provide a powerful tool for validating fossil fuel CO_2 (ffCO_2) emissions reported for individual regions, provided that fossil fuel sources can be separated from other CO_2 sources or sinks and atmospheric transport can be accurately accounted for. We quantified ffCO_2 by measuring radiocarbon (^(14)C) in CO_2, an accurate fossil-carbon tracer, at nine observation sites in California for three months in 2014–15. There is strong agreement between the measurements and ffCO_2 simulated using a high-resolution atmospheric model and a spatiotemporally-resolved fossil fuel flux estimate. Inverse estimates of total in-state ffCO_2 emissions are consistent with the California Air Resources Board's reported ffCO_2 emissions, providing tentative validation of California's reported ffCO_2 emissions in 2014–15. Continuing this prototype analysis system could provide critical independent evaluation of reported ffCO_2 emissions and emissions reductions in California, and the system could be expanded to other, more data-poor regions
    corecore