56 research outputs found

    Application of neutron imaging to detect and quantify fatigue cracking

    Get PDF
    Non-destructive imaging techniques provide a unique opportunity to study crack initiation and propagation behaviour in structural materials. To evaluate the applicability of different volumetric imaging techniques, a round bar notched sample of duplex stainless steel was fatigue cracked and studied in situ and ex situ. Neutron and synchrotron X-ray tomography was used along with destructive methods and Bragg edge neutron imaging to evaluate the fatigue crack. Neutron attenuation tomography obtained a three-dimensional image in which the crack was readily identifiable. The neutron tomography, although lower in spatial resolution compared with the X-ray synchrotron tomography and requiring higher acquisition time, is sensitive to the phase chemistry, and has the potential to study engineering size components. Bragg edge neutron transmission imaging allows for the mapping of two-dimensional elastic strains and was used to identify the fatigue crack from the reduction in the strain in the region where the crack propagated. A finite element model of the cracked specimen was used to simulate the average through thickness strain that is measured by the Bragg edge neutron imaging technique. The strains measured in the ferritic phase correspond better with the simulation strains than the strain measured in the austenitic phase. It is concluded that this difference is due to strain partitioning, which is influenced by the strong texture present in the duplex steel

    High speed synchrotron X-ray imaging studies of the ultrasound shockwave and enhanced flow during metal solidification processes

    Get PDF
    The highly dynamic behaviour of ultrasonic bubble implosion in liquid metal, the multiphase liquid metal flow containing bubbles and particles, and the interaction between ultrasonic waves and semisolid phases during solidification of metal were studied in situ using the complementary ultrafast and high speed synchrotron X-ray imaging facilities housed respectively at the Advanced Photon Source, Argonne National Laboratory, US, and Diamond Light Source, UK. Real-time ultrafast X-ray imaging of 135,780 frames per second (fps) revealed that ultrasonic bubble implosion in a liquid Bi-8 wt. %Zn alloy can occur in a single wave period (30 kHz), and the effective region affected by the shockwave at implosion was 3.5 times the original bubble diameter. Furthermore, ultrasound bubbles in liquid metal move faster than the primary particles, and the velocity of bubbles is 70 ~ 100% higher than that of the primary particles present in the same locations close to the sonotrode. Ultrasound waves can very effectively create a strong swirling flow in a semisolid melt in less than one second. The energetic flow can detach solid particles from the liquid-solid interface and redistribute them back into the bulk liquid very effectively

    THE ANTARCTIC TEMPERATURE INVERSION

    Full text link

    Variability in annual mean circulation in southern high latitudes

    No full text

    Effects of tropical sea surface temperature (SST) errors on the Antarctic atmospheric circulation of HadCM3

    No full text
    This paper investigate the large mean sea level pressure errors in the HadCM3 atmosphere-ocean global climate model around Antarctica and finds them to be caused by the sea surface temperature (SST) errors in the winter tropics. This teleconnection is explained by the warm tropical SST anomalies causing anomalous ascent which strengthens the Hadley circulation and increases the high-level (∼200hPa) divergence. This in turn interacts with the strong meridional gradient in absolute vorticity to generate Rossby waves that propagate polewards. By imposing SST anomalies, in the atmosphere only model, in different ocean basins it is shown that it is the SST errors over Indonesia and the eastern tropical Atlantic that are responsible for these wave trains; and hence, primarily responsible for the pressure anomalies. By contrast, a large SST error over the eastern tropical Pacific does not cause a wave train to be generated because it does not generate strong ascent. This study also demonstrates the difficulties in diagnosing errors within a coupled climate model since forcing, particularly in the tropics, may have a strongly non-local effect
    • …
    corecore