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a b s t r a c t 

Non-destructive imaging techniques provide a unique opportunity to study crack initiation and propagation be- 
haviour in structural materials. To evaluate the applicability of different volumetric imaging techniques, a round 
bar notched sample of duplex stainless steel was fatigue cracked and studied in situ and ex situ. Neutron and 
synchrotron X-ray tomography was used along with destructive methods and Bragg edge neutron imaging to 
evaluate the fatigue crack. Neutron attenuation tomography obtained a three-dimensional image in which the 
crack was readily identifiable. The neutron tomography, although lower in spatial resolution compared with the 
X-ray synchrotron tomography and requiring higher acquisition time, is sensitive to the phase chemistry, and 
has the potential to study engineering size components. Bragg edge neutron transmission imaging allows for the 
mapping of two-dimensional elastic strains and was used to identify the fatigue crack from the reduction in the 
strain in the region where the crack propagated. A finite element model of the cracked specimen was used to 
simulate the average through thickness strain that is measured by the Bragg edge neutron imaging technique. 
The strains measured in the ferritic phase correspond better with the simulation strains than the strain measured 
in the austenitic phase. It is concluded that this difference is due to strain partitioning, which is influenced by 
the strong texture present in the duplex steel. 

1. Introduction 

Structural integrity assessments are important tools when aiming to 
safely predict the longevity of service components. Many such assess- 
ments consider the most common damage mechanisms of engineering 
components, offering models for fatigue life predictions. Developing a 
comprehensive understanding of fatigue crack initiation and propaga- 
tion to inform the models is therefore of great engineering importance. 
Such predictive models can be used to forecast the fatigue life of service 
components, with the aim of reducing cost while maintaining safety. 
Validating fatigue life estimations through comparison with experi- 
mental results of non-destructive and destructive techniques is pivotal 
[1–3] . However, fatigue failure is microstructurally sensitive [4] , and is 
best described by probabilistic processes. Models for predicting fatigue 
life are inherently statistical, making their validation difficult. Detect- 
ing fatigue cracks is particularly challenging and has been the subject 
of research for many years. 

Destructive micromechanical methods (e.g. serial sectioning [5] ) to 
detect crack initiation sites and propagation paths are well-established. 

∗ Corresponding author. 
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Non-destructive techniques, for example acoustic emission (AE) com- 
bined with advanced signal processing [6] , offer in situ analysis of prop- 
agating cracks, though with lower resolution than destructive methods. 
Optical techniques to identify crack initiation, as well as quantifying 
associated parameters, such as opening displacement, are widely used 
in academic studies. One such technique, that is gaining popularity in 
recent years, is optical or scanning electron microscopy combined with 
digital image correlation [7] . Digital image correlation (DIC) is now a 
routine full-field technique for surface displacement measurements and 
has previously been used, in conjunction with finite element analysis, 
to calculate crack driving forces [8] . DIC tracks the displacement of a 
surface speckle pattern before and after material deformation, which 
makes the calculation of full-field displacement possible. Similar to dig- 
ital image correlation analysis of surface cracks, digital volume correla- 
tion (DVC), applied on laboratory or synchrotron X-ray tomography, has 
been demonstrated to quantify cracks within the material [9,10] . While 
DIC analysis of surface cracks is applicable to all materials, the DVC anal- 
ysis is only possible on materials which have the appropriate speckle pat- 
tern required for image correlation inside them. This prerequisite limits 
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DVC analysis to materials that are composite (e.g. Aluminium Titanium 

metal matrix composites [11] or nodular cast iron [12] ) or heteroge- 
neous materials (e.g. nuclear graphite [13] or wood [14] ). 

Computed tomographic imaging, performed for DVC, is also useful to 
study the behaviour of fatigue cracks because of the three-dimensional 
nature of the crack propagation path [15] . The two widely used tech- 
niques are X-ray (laboratory and synchrotron) and neutron tomogra- 
phy. Advances in X-ray imaging are well reported [16–18] , notably as 
it is developed in parallel with medical research [19] . Neutron imag- 
ing techniques, however, have been less advanced due to the limited 
number of instruments capable of offering the technique. Both X-ray 
and neutron tomography have their advantages and disadvantages, for 
example neutrons can penetrate greater depths in most metallic sys- 
tems, such as steel, when compared to X-rays, making them more suited 
for studying engineering components [20] . However, the lower spatial 
resolution of neutron tomography and often longer acquisition times 
mean that detailed analysis of smaller features [21] , such as cracks, is 
difficult. The two techniques (X-ray and neutron tomography) provide 
complementary information, potentially adding more value when used 
in conjunction with one another for more in-depth analysis. Presently, 
the UK’s dedicated neutron imaging beamline, IMAT, at ISIS Muon and 
Neutron Source, is advancing time-of-flight (ToF) neutron imaging, en- 
ergy dispersive radiography, and white-beam tomography for engineer- 
ing [22] and material science [23] applications. 

Duplex Stainless Steels are important for corrosion resistant appli- 
cations [24] . Duplex stainless steels have two microstructural phases, 
usually with near equal phase volumes, of ferrite and austenite steel 
[25] . This complex microstructure, which is often accompanied by in- 
ternal residual stresses and strong textures, makes predicting the fatigue 
behaviours of duplex steels complicated [26] . For very high cycle fa- 
tigue, it has been suggested that crack nucleation sites generally occur 
at the phase boundaries on the materials surface [27] , yet the presence 
of non-metallic inclusions has been found to initiate cracking in the ma- 
terial subsurface [28] . Also, much work has focused on low cycle fatigue 
[25,26] , whilst medium cycle fatigue regime for duplex steel is less un- 
derstood [31] . 

The aim of this study is to investigate medium cycle fatigue crack nu- 
cleation and propagation in a duplex stainless steel, Alloy 2205, using 
two neutron imaging techniques: Bragg edge transmission imaging and 
neutron computed tomography (NCT). While neutron Bragg edge imag- 
ing allows measurement of the average elastic strain variation through 
the thickness of a sample, neutron computed tomography visualises the 
three-dimensional internal structure. Bragg edge transmission imaging 
has successfully been used to examine the residual strain developed dur- 
ing additive manufacturing of Inconel 625, via direct metal laser melting 
[32] . A recent study measured the compressive residual strain beneath 
the surface of a laser-shock peened plate [33] . The technique has also 
been employed to map the strain field around a fatigue crack propagat- 
ing through X70 steel [34] . The neutron imaging techniques were com- 
plemented by parallel beam, synchrotron X-ray computed tomography 
(XCT) and the results of these various non-destructive techniques were 
validated using destructive, post-mortem scanning electron microscopy. 
The literature on crack detection using XCT is rich [35] but there are 
few studies that report crack detection and quantification using Bragg 
edge transmission imaging or NCT [36,37] . This is partly due to the 
novelty of detectors and instruments that are capable of making such 
techniques more widely available. Future approaches could potentially 
combine three-dimensional Bragg edge transmission imaging with neu- 
tron tomography and DVC to study the elastic and plastic behaviour of 
materials. 

This paper will assess the extent and limitation of neutron imaging 
techniques to identify and quantify crack nucleation and propagation. 
In addition, both neutron techniques will be shown to be able to distin- 
guish different phases of the duplex steel as well as quantifying strain 
partitioning between the phases. In particular, NCT, unlike XCT, allows 
for different phases in the material to be identified. 

Fig. 1. A Bragg edge pre-loading and post-loading, with an exaggerated shift to 
demonstrate the effect used to calculate elastic strain. 

2. Background 

2.1. Bragg edge transmission imaging 

In Bragg edge neutron transmission imaging, the incident neutron 
beam is directed at the sample and a neutron counting detector is placed 
directly behind the sample. The arrangement allows for measurement 
of Time of Flight (ToF) for individual transmitted neutrons through the 
sample. The ToF measurements of individual neutrons are used to cal- 
culate their wavelength: 

� = 
ℎ� 

�� 
(1) 

where � is the wavelength of the neutron, t its time of flight, h is 
Planck’s constant (6.626 ×10 − 34 Js), m is the mass of the neutron 
(1.675 ×10 − 27 kg), and L is the path length of the neutron (beamline spe- 
cific). A spectrum comprising the intensity of neutrons passed through 
the sample as a function of their wavelength can therefore be created. 
Transmission spectra contain distinctive increases of intensity, associ- 
ated with the neutron wavelength at which Braggs’ law (2 dsin ( �) = n �, 
where � is the angle between the neutron beam and the lattice plane, 
d is the lattice spacing and n is an integer) is no longer satisfied for a 
given family of ( hkl ) lattice planes [34] . At this neutron wavelength, 2 �
angle becomes greater than 180° for the given ( hkl ) and neutrons of en- 
ergies lower (higher wavelength) than this are transmitted and no longer 
diffracted. An increase of intensity is observed at this wavelength in the 
transmission spectrum, known as a Bragg edge [38,39] . A Bragg edge 
wavelength corresponds to twice the interplanar lattice spacing and is 
analogous to a Bragg peak, in that shifts in the Bragg edge position can 
be used to calculate elastic strain: 

� = 
� − � 0 

� 0 
= 
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Δ�

�0 
(2) 

where, d is the lattice spacing, d 0 is the stress free lattice spacing, � is the 
wavelength at Bragg edge position and �0 is the stress-free Bragg edge 
position; Δ� is shown in Fig. 1 schematically which demonstrates an 
exaggerated Bragg edge shift, caused by the application of a compressive 
load. 

It has been shown that an analytical function can be used to fit a 
Bragg edge, giving a wavelength position in the transmission spectrum 

[32] : 
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where T ( �) is transmission intensity at wavelength �, �hkl is the wave- 
length of the Bragg edge associated with (hkl) plane, � is the edge width, 
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� is the edge asymmetry, and C 1 and C 2 are constants related to the off- 
set and height of the edge, respectively. The function was used to plot 
the Bragg edges in Fig. 1 . Bragg edge imaging has been successfully used 
to measure through thickness average elastic strain with Δ ∈ ≈10 -5 ac- 
curacy [40] . 

The Bragg edge transmission imaging technique generates two- 
dimensional maps of elastic strain over the entire detector field of view 

(FoV) in a single scan. The strain map will have a spatial resolution de- 
pendent on the detector’s pixel size [41] . Producing a strain map with 
similar spatial resolution using conventional powder diffraction method 
requires many point measurements with a total acquisition time depen- 
dent on the number of points being collected and the chosen gauge 
volume, which often exceeds the acquisition time of single shot Bragg 
edge transmission imaging by orders of magnitude [13] . However, it 
should be noted that in a conventional powder diffraction measurement 
the combined use of slits and collimators on the incident and diffracted 
beam allows for a cuboid gauge volume to be defined within the sample. 
Conversely, a Bragg edge scan measures the elastic strain component 
parallel to the incident beam direction, averaged through the sample 
thickness. This may be beneficial or disadvantageous depending on the 
sample geometry and desired strain component to be measured. 

2.2. Computed tomography 

An alternative three-dimensional technique is attenuation-based 
computed tomography (CT) in which a volumetric image of the fea- 
tures based on their attenuation coefficient is created. The volumetric 
image allows for non-destructive interrogation of the features within the 
sample, including cracks [42] . Methodologically, neutron and X-ray CT 
are similar, although they are based on different physics laws: whilst 
X-rays interact with the atoms valence electrons, thermal neutrons in- 
teract with the nuclei of the atom [43] . In both techniques, projections 
of transmitted X-rays or neutrons at multiple angles are captured by an 
appropriate detector. The projections are then reconstructed into a 3D 
image using a reconstruction algorithm, depending on the type of CT 
performed and the data quality [44] . For the attenuation of X-rays and 
thermal neutrons the Beer-Lambert law is valid [45] . Eq. (4) demon- 
strates the simplified Beer-Lambert law of exponential attenuation for 
monoenergetic incident radiation to allow for a direct comparison of the 
principles of neutron and X-ray CT. 

� = � 0 � 
( − �� ) (4) 

In this equation I is the transmitted intensity, I 0 is the initial inten- 
sity, B is an attenuation coefficient, and x is distance transmitted through 
the substance. 

For X-rays, B is the linear attenuation coefficient, which can be calcu- 
lated using the product of the mass attenuation coefficient and the mate- 
rial density. This coefficient, for a given energy, will increase for atoms 
with a greater number of electrons, or higher atomic number [46] . For 
neutrons, B is often referred to as the total macroscopic cross-section, Σ, 
and represents the effective interactive area of all nuclei within a certain 
volume [20] . Values of Σ for a given neutron energy are calculated from 

the material density, atomic weight and the microscopic cross-section, 
depending on the type of interaction that has occurred, e.g. absorption 
or scattering. Eq. (5) calculates the macroscopic cross-section: 

Σ = 
�

� 
� � 

(

�� + �� 
)

= 
�

� 
� � �� (5) 

where Σ is the macroscopic cross-section, A is material cross-sectional 
area, N A is Avogadro’s constant, �a is the absorption microscopic cross- 
section, �s is the scattering microscopic cross-section, �t is the total mi- 
croscopic cross-section and � is the material density. 

Synchrotron X-ray micro-CT has become a well-established method 
for inspecting material damage including cracks, voids and other mi- 
crostructural inconsistencies with beamlines achieving a voxel size of 
the order of 1 �m 3 , depending on experimental setup, equipment and 

Table 1 
Material properties of Alloy 2205 
duplex stainless steel [52] . 

Property Value 

Density [kg/m 3 ] 7700 
Young’s modulus [GPa] 190 
Poisson’s ratio 0.3 
Yield stress [MPa] 450 

Table 2 
Alloy 2205 duplex stainless steel chemical 
composition [52] . 

C Cr Ni Mo N S 

0.020 22.1 5.6 3.1 0.18 0.001 

the size of the sample being investigated [47] . For neutron CT the spa- 
tial resolution is heavily influenced by beam divergence and detector 
characteristics, such as scintillator thickness [28,29] but the resolution 
is often of the order of tens of micrometres. However, neutrons have the 
benefit of deeper penetration in engineering materials compared to X- 
rays. Hence engineering materials with relatively high atomic numbers, 
such as steels, are significantly more suited to NCT than XCT. Isotope- 
specific imaging is another advantage offered by NCT. For example, 
NCT has been used to observe the distribution of hydrogen, which heav- 
ily scatters neutrons, within as-received steel plates, to develop materi- 
als resistant to hydrogen embrittlement [30,31] . Time-of-flight neutron 
imaging may also be used to identify contrast between phases, if they 
have differing crystalline structures. For instance, if one phase has a 
body centred cubic ( bcc ) crystalline structure, and the other has a face 
centred cubic structure ( fcc ), the transmitted neutron spectra will vary, 
hence both neutron and X-ray CT have been used in this study. 

3. Experimental design 

3.1. Sample material, geometry, and initial fatigue study 

Alloy 2205 duplex stainless steel was used in this study. It consists of 
Body Centre Cubic ( bcc ) ferritic � and Face Centre Cubic ( fcc ) austenitic 
� phases in roughly equal volume fractions. The typical material prop- 
erties can be found in Table 1 , with chemical composition displayed in 
Table 2 [52] . Electron backscatter diffraction was performed on a cross- 
section of the material, revealing that there was stronger texture in the 
ferritic phase compared to the austenite ( Fig. 2 ). 

A cylindrical sample was used as it has been shown that the 3D 
elastic stress field in an axisymmetric sample can be back calculated 
from through thickness average energy dispersive strain measurements 
[45,46] . The sample geometry is shown in Fig. 3 ; a notch was machined 
so that the location of the fatigue crack is prescribed to facilitate con- 
tinuous monitoring using Bragg edge transmission imaging. The notch 
dimension was a/ W = 0.2 ( a = 1 mm, W = 5 mm). 

It was important to ensure that a crack initiated within a known 
number of cycles that could fit in the tight schedule of the beamtime. 
It was therefore essential to select a load that induced failure within 
the order of several hundred thousand cycles as the test frame could 
reliably apply fatigue load up to 10 Hz. The total number of test spec- 
imens available for preliminary investigations was restricted to seven 
due to shortage of material. Whilst ten samples were machined in to- 
tal, three were retained for the in situ experiment, to ensure one test 
specimen and two spares were available if a sample were to be acci- 
dently damaged during setup. In order to identify the appropriate load, 
a number of specimens were tested before the neutron experiments at 
different levels of load and their fatigue lives were measured; these can 
be seen in Fig. 4 . An initial maximum load, P max , for preliminary testing 
was estimated by applying the Point Method approach to the Theory 
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Fig. 2. EBSD results: (a) The grain-boundary energy distribution (GBED) and corresponding key for Alloy 2205 duplex steel, performed with a step size of 0.5405 �m. 
(b) Orientation distribution function for austenite. (c) Orientation distribution function for ferrite. 

of Critical Distances [55] , which estimated that a maximum load of ap- 
proximately 11 kN would be required to damage the sample within the 
medium cycle fatigue regime at roughly 5 ×10 5 cycles. This proved to 
be conservative and based on the results depicted in Fig. 4 , a maximum 

applied load of 16 kN would be used for the in situ loading experiments. 
Using assumptions from Linear Elastic Fracture Mechanics, the fatigue 
life of the sample was estimated to be less than 869,000 cycles, keep- 
ing within the dedicated experimental beamtime [31,56,57] . In all tests 
R = P min / P max = 0.01 was selected as it often provides the closest agree- 
ment with the theory of critical distances and the tests were carried out 
on an Instron 50 kN servo-hydraulic test frame at 10 Hz. 

3.2. In situ loading Bragg edge transmission neutron imaging 

The in situ loading neutron transmission imaging experiment was 
conducted using a 50 kN hydraulic Instron load frame at the ENGIN-X 
instrument at the ISIS Neutron and Muon Source, Rutherford Appleton 
Laboratory, UK. The sample was fatigued at maximum load of 16 kN 

in displacement control, with R = 0.01 and frequency of 10 Hz. Local 
compliance of the sample around the notch was measured before each 
scan using an extensometer of gauge length 12.5 mm attached to the 
specimen. Crack nucleation would increase the compliance of the sam- 
ple thus allowing an independent method to detect the crack. Similarly, 
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Fig. 3. Schematic of sample geometry. 

Fig. 4. Fatigue life of seven samples, preliminarily tested to estimate a load at 
which the sample could fail in a reasonable number of cycles. R = 0.01. 

peak-to-peak loads were continuously measured and monitored visually 
as crack nucleation would result in a drop in the load allowing for fur- 
ther validation. 

Peak-to-peak load monitoring was achieved using a high frequency 
load cell with the output signal recorded using a National Instrument 
data acquisition system at 10 kHz. Load data was concurrently anal- 
ysed using an in-house python code, providing graphical visualisation of 
the peak-to-peak load variation every 250 cycles. Cyclic loading of the 
sample was paused, with the sample held at maximum load, to allow 

for completion of Bragg edge imaging scans at 0, 2.5 ×10 5 , 3.5 ×10 5 , 
4.5 ×10 5 and 5.145 ×10 5 cycles. A microchannel plate (MCP) neutron 
counting detector, designed by Nova Scientific and University of Cali- 
fornia at Berkley, was used to obtain two-dimensional radiographs, de- 
tails of which can be found elsewhere [19–37] . The MCP comprised 
a 2 ×2 array of Timepix readout application specific integrated cir- 
cuits (ASIC), with 512 ×512 pixels each 55 ×55 μm 2 providing a total 
field of view (FoV) of 28 ×28 mm 2 [59] . On detection of a neutron, 
an electron avalanche is generated within the MCP pore that is subse- 

quently counted by the ASIC readout CMOS chip, along with the neu- 
tron ToF. For the cold and thermal neutron energies, detection efficiency 
is approximately 50% [60] , with a selected time resolution of 4.48 �s 
[38–40] . 

As the MCP has been designed for a different beamline (the IMAT 
facility) and not for the ENGIN-X beamline, a custom-built mounting 
arrangement was used to ensure that the distance between sample and 
detector was minimised, reducing the negative impact of geometrical 
blurring. The setup, seen in Fig. 5 , enabled a sample to detector distance 
of 25 mm. The measured ToF range, between 5 ms and 68.3 ms, was 
chosen to ensure that Bragg edge positions of the most useful hkl planes 
with highest intensities, for example the 110 and 111, were captured. 
A flat field scan, without a mounted sample present, was recorded to 
normalise the scans for varying pixel response and non-uniformity of 
the beam. 

ENGIN-X, a beamline dedicated to strain measurement, is designed 
for a high ToF resolution which negatively impacts its neutron flux. Con- 
versely, IMAT a dedicated imaging beamline, has much higher flux but 
at the time of the experiment, was not capable of housing the 50 kN In- 
stron load frame. The experiment, therefore, had to be carried out at EN- 
GINX which meant significantly longer scan times than what is expected 
from an imaging beamline. A preliminary scan was performed on the 
sample, with the quality of counting statistics being checked every hour, 
to ensure that spectral data was satisfactory in all regions of the sam- 
ple, regardless of the varying material thickness. It was determined that 
4-hour scans allowed for adequate acquisition statistics. Fig. 6 shows 
an example transmission spectrum for the duplex steel specimen, with 
certain Bragg edges and their associated crystallographic phases ( � or 
�) exhibited. 

The analytical function previously detailed ( Eq. (2) ) was used to 
fit Bragg edges and their associated wavelength � was extracted for 
each pixel, allowing for generation of two-dimensional maps examples 
of which will be given in Section 4.3 . The residual stress of the as- 
manufactured specimen was not the focus of this study thus, a stress free 
specimen to determine the stress free Bragg edge wavelengths (i.e. d 0 ) 
was not examined [20] . The values of �0 were obtained at a region away 
from the notch prior to cycling. Due to the relatively low flux available 
at neutron facilities, an individual pixel has a low signal-to-noise ratio 
[62] . Nevertheless, counting statistics were improved substantially by 
employing a spatial binning technique, at the sacrifice of effective spa- 
tial resolution [41,42] . Analysis was completed pixel by pixel, whilst 
recursively combining spectral information from a 39 ×39 pixel region, 
ensuring sufficient statistics were available to fit the Bragg edges. 

3.3. Neutron tomography 

After the in situ experiment, a neutron computed tomography (NCT) 
scan was performed on the sample on the IMAT imaging beamline. 
The specimen was positioned 11 mm from the 2048 ×2048 pixel AN- 
DOR Zyla CMOS 4.2 Plus detector [48] . The imaging camera does not 
distinguish between the differing neutron energies, generating white- 
spectrum radiographies. For neutron CT, spatial resolution is dominated 
by geometrical blurring because of sample positioning, which is in turn 
dependent on the instrument specific beam divergence, referred to as 
the L B / D B value. This value is calculated using the equation: 

� � 

� � 
= 
� ��� 

� � 
(6) 

where, L B is the distance between the beam focusing aperture and the 
camera (10 m), D B is the aperture diameter (40 mm), l max is the maxi- 
mum distance between the sample and the camera (23 mm), whilst d B is 
the geometrical blurring. The setup for NCT scans equated to geometri- 
cal blurring that provided a spatial resolution of approximately 92 μm. 
The Nyquist-Shannon sampling theorem postulates that the minimum 

number of projections ( N ) required for a 360° rotation of the samples is 
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Fig. 5. Experimental setup, demonstrating the sample position in relation to the incident neutron beam and the MCP detector. 

Fig. 6. Transmission spectrum for Alloy 2205 duplex stainless steel. The indi- 
vidual hkl planes have been labelled with reference to their associated allotrope, 
ferrite �-phase and austenite �-phase. 

calculated for cylindrical samples using the equation [64] : 

� = 
� × �

� � 
(7) 

where, W is the sample radius. It was calculated that N = 204 would 
be sufficient, each projection count time was thus 30 s, with rotations 
of 1.76° between each scan. Open beam scans (flat field), without the 
presence of a sample, were taken before and after each tomography 
to normalise pixel-to-pixel variations in sensitivity and the influence of 
fluctuations in beam intensity across the detector FoV. Dark scans (dark 
field), with the shutter closed, were taken before the first and after the fi- 
nal tomography to correct for electronic noise within the detector. Also, 
scans were performed at 180° and 360° to correct for sample tilting. 

Once the projections are recorded, they were reconstructed to pro- 
duce a three-dimensional representation of the specimen. Neutron to- 
mography data is significantly noisier than X-ray tomography due to 
a lower signal to noise ratio. For such datasets, the simultaneous al- 
gebraic reconstruction technique (SART) is preferred to other forms of 
conventional reconstruction algorithms such as filter back projection 
(FBP) [65] . SART is an implementation of the frequently applied itera- 

tive technique, ART [31,42–66] , yet only requires one single iteration, 
significantly reducing the necessity of computational power. The FBP 
and SART algorithms were both used to reconstruct the NCT datasets to 
allow for comparison. 

3.4. X-ray computed tomography 

A synchrotron X-ray computed tomography (XCT) scan was also 
recorded on the sample at Beamline I12 (JEEP), Diamond Light Source, 
UK [47] . As the X-ray attenuation coefficients for the ferrite and austen- 
ite phases are very close ( < 3%), the scan was not expected to reveal 
any other microstructural information on the different phases in the 
duplex steel. The X-ray CT scan used a 90 keV monochromatic paral- 
lel beam and the beamline’s custom imaging detector, consisting of a 
2560 ×2160 pixel PCO.edge sCMOS detector lens-coupled to a LuAG:Ce 
scintillator. The nominal pixel resolution was 7.91 �m. A total of 1800 
projections over 180° were captured with an exposure time of 4.5 ms 
per projection. 

Reconstruction of the X-ray CT data was completed using the Fourier 
based gridrec algorithm [67] . This method provides significantly higher 
quality images on well sampled tomographic data sets, when compared 
to the conventional filtered back projection (FBP) algorithm [67] . 

3.5. Scanning electron microscopy 

After the non-destructive methods were used to evaluate the crack 
initiated in the specimen during in situ loading experiments, the sample 
was destructively tested to validate the non-destructive observations. 
The sample was cooled in liquid nitrogen below its ferrite phase duc- 
tile to brittle transition temperature and pulled in tension using the In- 
stron loading frame at ENGIN-X. This created a final fracture surface 
that was distinctly different from the fatigue crack surface developed 
during the in situ cyclic loading experiment, therefore allowing the fa- 
tigue crack geometry to be studied. The fracture surface was examined 
using JSM-6610LV low vacuum scanning electron microscope (SEM), at 
the Research Complex at Harwell (RCAH), UK. 

3.6. Finite element analysis 

Once a fatigue crack nucleates, the stress field in the sample changes 
to accommodate the reduction in the uncracked ligament as well as the 
stress concentration around the crack front. To calculate the strain field 
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Fig. 7. Schematic of the finite element model used to examine theoretical elastic strains in the cracked sample, assuming symmetry to simulate the crack geometry, 
as viewed by SEM. (Left) Mesh, (Middle) symmetry and loading conditions, (Right) examples von-Mises stress distribution from the FEA results in 3D and cross 
section. 

expected in a cracked sample, ABAQUS version 6.14–2 [68] was used to 
develop a static three-dimensional elastic-plastic model. The crack ge- 
ometry as viewed by SEM (see Section 4.2 ) was simulated in the model. 
A schematic of the model can be seen in Fig. 7 . Mesh refinement was 
completed in the region of interest, surrounding the crack and the notch, 
using a mesh size of 0.1 mm, quadratic tetrahedron elements (C3D10). 
Since there was no unloading simulated, no particular specification on 
the type of hardening for the plastic behaviour of the material was re- 
quired, thus isotropic hardening was assumed. The material properties 
used ( Table 1 ) obtained in prior work [69] . A quarter of the sample was 
modelled, taking advantage of the sample’s symmetry in the z-axis. Sym- 
metry in the y-axis was included to simulate the presence of the crack, 
through applying symmetry boundary conditions on a partitioned region 
of corresponding geometry to the crack, as viewed with the SEM. The 
boundary condition allows for the rotation of the cross-section plane in- 
duced by the combined tension and bending of the cracked sample to be 
simulated. A concentrated load was applied through a single reference 
point that was distributed across the top of the sample, as it was as- 
sumed that this would best simulate the influence of a bending moment 
induced by a substantial crack whilst under tensile load. 

4. Results 

4.1. Fatigue life of test specimen 

The cyclic loading was paused during the experiment and scans were 
performed at 0, 2.5 ×10 5 , 3.5 ×10 5 , 4.5 ×10 5 and 5.145 ×10 5 cycles. A 
sudden drop in the peak-to-peak load was observed at roughly 5.0 ×10 5 

cycles (see Fig. 8 ), with a crack at the notch becoming visible by eye 
at 5.145 ×10 5 cycles. From the peak-to-peak load, it could be suggested 

Fig. 8. Peak-to-peak load versus the number of cycles. The dashed lines indicate 
when fatigue loading was paused to complete a neutron transmission scan, with 
the sample held at the maximum load. 

that a crack was nucleated earlier at 1.6 ×10 5 cycles (note the grad- 
ual peak-to-peak drop), or possible just before 350,000 cycles (note the 
significant and visible peak-to-peak drop). 

4.2. Fractography 

Fig. 9 shows the SEM images taken from the fracture surface of the 
sample. The specimen has lost its circular cross section, which indicates 
some deformation has occurred whilst destructively pulling the sample 
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Fig. 9. (Centre) X13 Image of crack topol- 
ogy, which no longer appears circular due 
to deformation during the pulling process. 
(Clockwise from top left) X75 BSE image 
of proposed crack initiation site; X60 SEI 
of ductile fatigue region close to the notch; 
X110 SEI of the ductile fracture region; 
X100 SEI of crack tip region. 

apart. The fatigue crack growth region is clearly visible as a smooth area 
typical of ductile fatigue; the final shape of the crack front is obvious 
in the central image. The large fatigue failure area is accompanied by 
the rough area (bottom right figure), characteristic of ductile fracture. 
The interface between these two regions (bottom left) signifies the final 
crack front during the in situ experiment. The crack has propagated in an 
asymmetric fashion, which is potentially related to slight misalignment 
of the Instron loading frame used during the in situ experiment. 

4.3. In situ energy dispersive neutron imaging 

The bcc {110} � and fcc {111} � lattice planes were used to measure 
strain in the ferritic and austenitic phases of the duplex steel respectively 
at peak load. As seen in the materials transmission spectrum ( Fig. 6 ), 
the height of both edges are significantly greater than any other Bragg 
edges in each phase. Most importantly, the {110} � and {111} � plane 
families have both previously been used successfully to measure strain, 
demonstrating reasonable agreeance with bulk elastic response [34,70] . 

Fig. 10 shows the elastic strain maps and the elastic strain along the 
notch for both hkl planes bcc {110} � and fcc {111} � at various inter- 
vals throughout the cyclic loading. It should be noted that the full field 
beam measures the average strain through the thickness of the specimen, 
which varies due to its circular cross section across the map. These re- 
sults demonstrate the crack may have nucleated prior to 250,000 cycles, 
as the strain visibly increases relative to pre-loading. Also, there is a dis- 
tinctive strain redistribution when the fatigue crack has propagated to 
a significant size at 514,500 cycles. The effect of the fatigue crack can 
be identified more clearly in the ferritic {110} � elastic strain maps com- 
pared to the corresponding austenitic {111} � maps. For both maps gen- 
erated at 514,500 cycles, the region associated with crack tip stresses, 
which appears to have contributed most significantly to the clear strain 
redistribution has been labelled, localised crack tip stress. Analysis of 
ferritic strain partitioning between the ferrite and austenite phases of 
the duplex steel was not the primary objective of this study. However, 
it can be seen in the maps that the ferrite phase is carrying more of 
the strain in the material. This is in agreement with previous studies on 
duplex stainless steels, which demonstrated stiffness in the ferrite is gen- 
erally greater than in the austenite [71] . The diffraction elastic moduli 
of {110} and {111} are 242 GPa and 214 GPa respectively [72] which 
along with strong texture typically observed in wrought duplex stainless 
steels [73] can account for the strain partitioning observed in the mea- 
surements. The error of measured strain corresponds to uncertainty in 
determining the Bragg edge position, like strain measured using Bragg 
peak analysis. The Bragg edge fitting error in the strain map generation 
is 3.82 ×10 − 4 for {110} � and 4.29 ×10 

− 4 for {111} � . This translates to 

strain errors of roughly 94 �� and 103 �� for {110} � and {111} � , re- 
spectively. 

Small regions of extremely high compressive stress, with some exam- 
ples labelled ‘non-converging pixels’, correspond to areas where it has 
not been possible to fit the Bragg edge. This occurs more frequently in 
the {111} � data, particularly at 0 cycles and after the crack has been nu- 
cleated at 514,500 cycles. This also suggests that strain in the austenitic 
material is more difficult to study for duplex steels, as maps for both 
edges at each number of cycles are generated from the same data set. The 
presence of plasticity will generate high intergranular strains, known to 
impact strain measurement accuracy [74] . Yet this effect is assumed to 
be negligible as the influence of localised plastic strains, associated with 
crack tip stresses, will have diminished on averaging through the entire 
material thickness. 

4.4. Post-fatigue CT imaging 

Fig. 11 displays reconstructed slices from neutron and X-ray tomog- 
raphy scans. The virtual slices of NCT were obtained using FBP and SART 
algorithms with and without a median 3 ×3 filter. Fig. 11 also demon- 
strates the values of signal to noise ratio (SNR) and contrast to noise 
ratio (CNR) for each algorithm used for NCT reconstruction. CNR and 
SNR were calculated using a slice 40 mm from the notch and Eqs. (8) and 
(9) [66–75] . The visual inspection of the reconstructed slices, presented 
in the Fig. 11 , appears to demonstrate that SART is the favoured algo- 
rithm for the noisy neutron data set. This is confirmed by the CNR and 
SNR values. Background noise is further reduced on application of the 
filter, again supported by higher SNR and CNR. For context, the X-ray 
reconstruction SNR and CNR values were 42940 and 579, respectively. 

��� = 
���� 

��� 
(8) 

��� = 
���� − ��� 

��� 
(9) 

where, �sig and �bg are mean pixel value for the signal area (inside the 
sample) and background area (outside the sample), whilst �bg is the 
background area’s standard deviation. 

Volume rendering of both reconstructed data sets was completed 
in Avizo 9.3.0 software [76] . The better spatial resolution of XCT 
( ∼7.91 �m) offers a greater opportunity to examine the crack morphol- 
ogy compared to NCT which has poorer spatial resolution ( ∼92.0 �m). 
It was therefore more difficult to visualise the crack using NCT. Us- 
ing the filtered SART reconstruction algorithm for NCT reconstruc- 
tion, however, it was possible to distinguish the crack. The side-by-side 
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Fig. 10. (Left) The elastic strain maps generated using the ferritic 110 and austenitic 111 planes, at six points through the samples fatigue life. The strain gradually 
increases as the crack propagates and the cross section reduces. (Right) Graphical representation of the elastic strain measured along the notch, supporting crack 
nucleation may have occurred prior to 250,000 cycles. The final scan at 514,500 cycles clearly demonstrates the expected redistribution of stress associated with a 
crack of significant size. The compressive strain observed in the final stage is due to out of plane bending of the sample as the crack propagates non-symmetrically. 

Fig. 11. (Top) Reconstructed slices of the X-ray data using the 
gridrec algorithm, with FBP and SART algorithms for neutron 
data. Slices were all taken 40 mm from the notch, to ensure the 
crack did not influence results. (Bottom) Quantitative repre- 
sentation of neutron reconstruction qualities using their SNR 
and CNR. 
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Fig. 12. Slice from rendered X-ray CT (a) and neutron CT (b) at the same loca- 
tion, allowing for direct comparison of the techniques regarding their ability to 
visualise the crack profile. 

Fig. 13. The crack as seen using (a) SEM – note the distortion that occurred 
whilst pulling the sample apart; (b) by segmenting the crack using X-ray CT. This 
is the area over which the neutron Bragg edge tomography measures average 
strain. 

comparison of XCT and NCT crack profile in Fig. 12 confirms this. The 
X-ray reconstruction shows a clear crack outline, due to the high spa- 
tial resolution of X-ray tomography, and with significant attenuation 
contrast between steel and air, confirming the shadow witnessed in the 
neutron image is caused by the crack. 

The X-ray absorption behaviour is considered the same for both 
phases but it is apparent that the NCT can provide information on the 
duplex steel phases, as there is visible contrast as a result of the austen- 
ite and ferrite. Whilst localised microstructural features, such as car- 
bides, are certainly present in the material, it is unlikely that they would 
greatly influence the NCT image quality, as their size is generally much 
smaller than that of the technique’s spatial resolution [77] . Fig. 12 b 
demonstrates how it is possible to examine the internal variations in 
phase, and potentially with improved resolution allow for the devel- 
opment of a range of post-processing correlative techniques, to be dis- 
cussed in Section 5 . This variation in the greyscale offers a chance to 
analyse the NCT data using digital volume correlation if the before and 
after loading volumetric images were available. 

Fig. 13 compares the fractographical crack topography seen using 
SEM with the crack morphology observed in a cross-section of the ren- 
dered and segmented XCT data. Crack segmentation using the rendered 
neutron data was not possible as there was insufficient contrast between 
the crack and surrounding metal. Comparing the segmented XCT and 
SEM images allows for valuable insight into the limitations in most ac- 
curate non-destructive (i.e. XCT) and destructive methods. Whilst the 
morphology of the crack in both images are very similar, it appears that 
regions close to the crack tip have been omitted in XCT data as the open- 
ing of the crack was less than the spatial resolution of the tomography 
data. 

Fig. 14. (a) Comparison of measured {110} � and FEA elastic strain running 
parallel to the notch for the cracked sample. (b) Comparison of measured {111} �
and FEA elastic strain running parallel to the notch for the cracked sample. Inset 
on both graphs is the corresponding strain map. Typical �� error corresponding 
to the Bragg edge fitting error for the 39 ×39 pixel spatial binning used for strain 
map generation. (c) Elastic strain from FEA on the cracked cross section of the 
sample with assumed beam direction relative to the crack. 

4.5. Finite element analysis 

Bragg edge imaging measures average through thickness elastic 
strain. Therefore, the same through thickness averaging on the elastic 
component of strain was performed on the FE results. This averaging 
takes into account the higher stress field around the crack tip as well 
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as the bending stress that is induced in the sample due to the crack 
invalidating the initial axisymmetric condition of the sample. No dif- 
ferentiation between the phases were considered in the model, and the 
macromechanical material properties of the duplex steel were consid- 
ered. Fig. 14 shows the comparison between the FE results and measure- 
ments made on {110} � and {111} � along a profile passing through the 
centre line of the notch. Fig. 14 shows a good agreement between the FE 
results and the experimental measurements although {110} � measure- 
ments are closer to the model than {111} � which could be explained by 
the significant difference in levels of texture between the two phases. 

5. Discussion and future work 

5.1. Discussion 

The aim of this investigation was to detect and quantify the effects 
of a crack using various non-destructive techniques: neutron Bragg edge 
transmission imaging, neutron computed tomography, X-ray computed 
tomography. The non-destructive findings were validated against a de- 
structive scanning microscopy analysis. Bragg edge transmission imag- 
ing was demonstrated to identify the presence of a crack in situ, through 
the generation of strain maps. Although a quantitative method that mea- 
sures the average strain through the sample, Bragg edge imaging is in- 
capable of resolving crack morphology. Alternatively, it was shown that 
neutron tomography can be used to create a three-dimensional repre- 
sentation of the crack in the sample as well as observing contrast in the 
duplex stainless steel specimen due to its two different phases. X-ray to- 
mography has a much higher spatial resolution, which could be used to 
segment the crack in a volumetric image more precisely. However, the 
low penetration depth of X-ray in engineering materials such as steel 
can be limiting. It is also not possible to resolve different phases of du- 
plex steel in X-ray absorption contrast tomography due to the similarity 
between their attenuation coefficients. Other techniques such as X-ray 
propagation phase contrast tomography might be used for this purpose 
[78] . 

The specimen was designed to be axisymmetric so that the strain field 
across its cross section could be back-calculated from the through thick- 
ness average strain measured using the full field beam in the Bragg edge 
imaging experiment. The crack propagated unsymmetrically through 
one side of the specimen invalidating its axisymmetric condition. It was 
therefore not possible to back-calculate the strain variation through the 
cross-section analytically. Instead, a three-dimensional finite element 
model was created whose crack geometry was representative of that ob- 
served in the scanning electron microscopy study. 

It was also concluded that strain accuracy is significantly better for 
the ferritic {110} � edge, than that of the austenitic {111} � edge. The 
NCT technique also demonstrates the presence of a crack, yet is re- 
stricted by lower spatial resolutions, especially when compared to the 
more conventional XCT. Both neutron imaging techniques hold great 
promise, with the potential to be used in conjunction with each other 
for correlative studies. 

Directly compared with X-ray computed tomography, the neutron 
computed tomography appears to be lower in quality, as seen in Fig. 12 . 
It was observed that NCT has the ability to distinguish different phases 
in the duplex steel, potentially providing an opportunity to be used with 
quantitative three-dimensional strain measurement techniques such as 
DVC. Despite having a greater spatial resolution, the XCT cannot resolve 
near-tip crack morphology when the sample is unloaded. This is likely 
due to the crack closure after unloading. It has been shown that for 
accurate observation of cracks, in situ loading experiments that keeps 
the crack open are more successful [79] . 

Finite element analysis of the sample was performed which included 
information from the crack morphology obtained using SEM analysis. 
Strain measured in the ferritic {110} � is of a comparable order of magni- 
tude to that of the FEA, with a clear drop when averaging entirely along 
the crack tip, similar the FEA. The austenitic {111} � edge measures un- 

realistic magnitudes of strain, and whilst the maps provide evidence of 
a crack, the strain measurements are less accurate. 

The differences between the strains that are measured experimen- 
tally and calculated by FEA are likely to be caused by the crack front 
not being completely perpendicular to the beam direction, which was 
assumed when modelling. The neutron transmission scan was performed 
with the crack opening being very nearly perpendicular to the incident 
beam, yet even small misalignments can cause noticeable shifts in the 
relative crack position, as seen in the strain cross-section. The scan being 
averaged through the material thickness, however, only provides useful 
information because the sample is suitably orientated in a appropriate 
direction. 

5.2. Future work 

This study demonstrated the potential of Bragg edge transmission 
imaging for detecting the presence of cracks, through the generation 
of two-dimensional strain mapping. To improve counting statistics, it 
would be recommended to scan for longer times, which would eradi- 
cate the non-converging regions, whilst also allowing for a reduced spa- 
tial binning area and improved effective spatial resolution. The next 
steps for the Bragg edge technique would be development of a three- 
dimensional elastic strain field, by completing Bragg edge tomographic 
scans at many different angles. This is a technique currently under 
development, with the theoretical and practical issues around it be- 
ing tackled by others [32,33] . Also, through the development of mi- 
crostructurally informed models, for example crystal plasticity finite el- 
ement modelling, it may be possible to develop a greater understand- 
ing of the difference between the strain measured in the ferritic and 
austenitic phases, assuming that material texture has been measured 
accurately. 

For neutron CT, the practical aspects are current, with dedicated 
imaging beamlines continuously advancing the technology used to im- 
prove spatial resolution. For example, the IMAT beamline has recently 
introduced a cooled CCD camera, capable of reducing noise and there- 
fore improving the quality of images. Once spatial resolutions improve 
enough to perform DVC, the ability to measure total three-dimensional 
strain should become viable using duplex stainless steel. With Bragg- 
edge strain mapping allowing for analysis of the elastic strain field, and 
neutron tomography with DVC providing the total strain full field, a 
combination of both techniques could give a greater understanding on 
crack tip elastic and plastic strain evolution. 

It may also be possible to develop a correlative technique between 
neutron and X-ray tomography results. The crack morphology is much 
clearer in the X-ray images, yet it is not possible to visualise grain bound- 
aries. The crack morphology is much less visible in the neutron images, 
yet the presence of phases may become clear with better spatial res- 
olution. On registration of both volumes, it may be possible to cor- 
relate the crack and the presence of grain boundaries, providing im- 
portant information on crack propagation behaviour in duplex stainless 
steels. 

6. Concluding remarks 

• Bragg edge transmission imaging can be used for generating two- 
dimensional maps of the average elastic strain, with spatial reso- 
lutions sufficient to see the influence of large fatigue cracks, with 
ferritic steel delivering better results. Spatial resolution can be im- 
proved further to get greater detailed information on localised crack 
tip stresses. 

• Neutron CT allows for visualisation crack profiles, yet with poorer 
spatial resolution than that of established X-ray absorption CT. Neu- 
tron CT images do however provide information on the presence of 
different phases, and potentially on granular displacements, suggest- 
ing DVC is possible. 
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• Once both techniques reach a certain stage of development, com- 
bining results of both may allow for the study of three-dimensional 
plastic strain. Also, it may be possible to correlate between the in- 
formation provided in neutron and X-ray tomography to further un- 
derstand crack growth propagation along grain boundaries. 
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