17,420 research outputs found
Incidence angle bounds for lip flow separation of three 13.97-centimeter-diameter inlets
Low speed wind tunnel tests were conducted to establish a procedure for determining inlet-lip flow separation and to make preliminary examination of the incidence angle bounds for lip flow separation on inlets intended for the nacelles of STOL (short takeoff and landing) aircraft. Three inlets were tested. Two of the inlets had short centerbodies with lower lip area contraction ratios of 1.30 and 1.44. The third inlet had a cylindrical centerbody extended forward into the inlet throat with a lower lip area contraction ratio of 1.44. The inlets were sized to fit a 13.97 centimeter-diameter fan. For inlet throat Mach numbers less than about 0.43, the lip flow separation angle was increased by either increasing the ratio of throat velocity to freestream velocity (Vt/Vo) or by increasing the lower lip area contraction ratio. For throat Mach numbers greater than a certain value (ranging from 0.43 to 0.52), increasing throat Mach number in some cases resulted in a decrease in the lip flow separation angle. Extending a cylindrical centerbody into the inlet throat increased the flow separation angle for nearly all values of Vt/Vo
Quantitative mapping of rainfall rates over the oceans utilizing Nimbus-5 ESMR data
The electrically scanning microwave radiometer (ESMR) data from the Nimbus 5 satellite was used to deduce estimates of precipitation amount over the oceans. An atlas of the global oceanic rainfall was prepared and the global rainfall maps analyzed and related to available ground truth information as well as to large scale processes in the atmosphere. It was concluded that the ESMR system provides the most reliable and direct approach yet known for the estimation of rainfall over sparsely documented, wide oceanic regions
Metallic phase of the quantum Hall effect in four-dimensional space
We study the phase diagram of the quantum Hall effect in four-dimensional
(4D) space. Unlike in 2D, in 4D there exists a metallic as well as an
insulating phase, depending on the disorder strength. The critical exponent
of the diverging localization length at the quantum Hall
insulator-to-metal transition differs from the semiclassical value of
4D Anderson transitions in the presence of time-reversal symmetry. Our
numerical analysis is based on a mapping of the 4D Hamiltonian onto a 1D
dynamical system, providing a route towards the experimental realization of the
4D quantum Hall effect.Comment: 4+epsilon pages, 3 figure
Kcne4 deletion sex- and age-specifically impairs cardiac repolarization in mice.
Myocardial repolarization capacity varies with sex, age, and pathology; the molecular basis for this variation is incompletely understood. Here, we show that the transcript for KCNE4, a voltage-gated potassium (Kv) channel β subunit associated with human atrial fibrillation, was 8-fold more highly expressed in the male left ventricle compared with females in young adult C57BL/6 mice (P < 0.05). Similarly, Kv current density was 25% greater in ventricular myocytes from young adult males (P < 0.05). Germ-line Kcne4 deletion eliminated the sex-specific Kv current disparity by diminishing ventricular fast transient outward current (Ito,f) and slowly activating K(+) current (IK,slow1). Kcne4 deletion also reduced Kv currents in male mouse atrial myocytes, by >45% (P < 0.001). As we previously found for Kv4.2 (which generates mouse Ito,f), heterologously expressed KCNE4 functionally regulated Kv1.5 (the Kv α subunit that generates IKslow1 in mice). Of note, in postmenopausal female mice, ventricular repolarization was impaired by Kcne4 deletion, and ventricular Kcne4 expression increased to match that of males. Moreover, castration diminished male ventricular Kcne4 expression 2.8-fold, whereas 5α-dihydrotestosterone (DHT) implants in castrated mice increased Kcne4 expression >3-fold (P = 0.01) to match noncastrated levels. KCNE4 is thereby shown to be a DHT-regulated determinant of cardiac excitability and a molecular substrate for sex- and age-dependent cardiac arrhythmogenesis
The Loudest Event Statistic: General Formulation, Properties and Applications
The use of the loudest observed event to generate statistical statements
about rate and strength has become standard in searches for gravitational waves
from compact binaries and pulsars. The Bayesian formulation of the method is
generalized in this paper to allow for uncertainties both in the background
estimate and in the properties of the population being constrained. The method
is also extended to allow rate interval construction. Finally, it is shown how
to combine the results from multiple experiments and a comparison is drawn
between the upper limit obtained in a single search and the upper limit
obtained by combining the results of two experiments each of half the original
duration. To illustrate this, we look at an example case, motivated by the
search for gravitational waves from binary inspiral.Comment: 11 pages, 8 figure
A new numerical method to construct binary neutron star initial data
We present a new numerical method for the generation of binary neutron star
initial data using a method along the lines of the the Wilson-Mathews or the
closely related conformal thin sandwich approach. Our method uses six different
computational domains, which include spatial infinity. Each domain has its own
coordinates which are chosen such that the star surfaces always coincide with
domain boundaries. These properties facilitate the imposition of boundary
conditions. Since all our fields are smooth inside each domain, we are able to
use an efficient pseudospectral method to solve the elliptic equations
associated with the conformal thin sandwich approach. Currently we have
implemented corotating configurations with arbitrary mass ratios, but an
extension to arbitrary spins is possible. The main purpose of this paper is to
introduce our new method and to test our code for several different
configurations.Comment: 18 pages, 8 figures, 1 tabl
Equilibrium Properties of Temporally Asymmetric Hebbian Plasticity
A theory of temporally asymmetric Hebb (TAH) rules which depress or
potentiate synapses depending upon whether the postsynaptic cell fires before
or after the presynaptic one is presented. Using the Fokker-Planck formalism,
we show that the equilibrium synaptic distribution induced by such rules is
highly sensitive to the manner in which bounds on the allowed range of synaptic
values are imposed. In a biologically plausible multiplicative model, we find
that the synapses in asynchronous networks reach a distribution that is
invariant to the firing rates of either the pre- or post-synaptic cells. When
these cells are temporally correlated, the synaptic strength varies smoothly
with the degree and phase of synchrony between the cells.Comment: 3 figures, minor corrections of equations and tex
Covariant Pauli-Villars Regularization of Quantum Gravity at the One Loop Order
We study a regularization of the Pauli-Villars kind of the one loop
gravitational divergences in any dimension. The Pauli-Villars fields are
massive particles coupled to gravity in a covariant and nonminimal way, namely
one real tensor and one complex vector. The gauge is fixed by means of the
unusual gauge-fixing that gives the same effective action as in the context of
the background field method. Indeed, with the background field method it is
simple to see that the regularization effectively works. On the other hand, we
show that in the usual formalism (non background) the regularization cannot
work with each gauge-fixing.In particular, it does not work with the usual one.
Moreover, we show that, under a suitable choice of the Pauli-Villars
coefficients, the terms divergent in the Pauli-Villars masses can be corrected
by the Pauli-Villars fields themselves. In dimension four, there is no need to
add counterterms quadratic in the curvature tensor to the Einstein action
(which would be equivalent to the introduction of new coupling constants). The
technique also works when matter is coupled to gravity. We discuss the possible
consequences of this approach, in particular the renormalization of Newton's
coupling constant and the appearance of two parameters in the effective action,
that seem to have physical implications.Comment: 26 pages, LaTeX, SISSA/ISAS 73/93/E
Population coding by globally coupled phase oscillators
A system of globally coupled phase oscillators subject to an external input
is considered as a simple model of neural circuits coding external stimulus.
The information coding efficiency of the system in its asynchronous state is
quantified using Fisher information. The effect of coupling and noise on the
information coding efficiency in the stationary state is analyzed. The
relaxation process of the system after the presentation of an external input is
also studied. It is found that the information coding efficiency exhibits a
large transient increase before the system relaxes to the final stationary
state.Comment: 7 pages, 9 figures, revised version, new figures added, to appear in
JPSJ Vol 75, No.
- …