150 research outputs found
Lagrangian temperature, velocity and local heat flux measurement in Rayleigh-Benard convection
We have developed a small, neutrally buoyant, wireless temperature sensor.
Using a camera for optical tracking, we obtain simultaneous measurements of
position and temperature of the sensor as it is carried along by the flow in
Rayleigh-B\'enard convection, at . We report on statistics of
temperature, velocity, and heat transport in turbulent thermal convection. The
motion of the sensor particle exhibits dynamics close to that of Lagrangian
tracers in hydrodynamic turbulence. We also quantify heat transport in plumes,
revealing self-similarity and extreme variations from plume to plume.Comment: 4 page
Vaccinating sons against HPV: results from a U.S. national survey of parents
PURPOSE:
The quadrivalent HPV vaccination was approved for use in males ages 9 to 26 in 2009 and recommended for routine administration in 2011. The purpose of this study was to uncover predictable commonalities amongst parents who chose to vaccinate their 11-17 year old sons against HPV.
METHODS:
We compiled data from a U.S. national sample of 779 parents with sons 11-17 years old using a web-based survey to gather information about behavioral and sociodemographic factors which predicted receipt of 1 or more HPV vaccine doses based on parental report. Predictors were first modeled individually for univariable associations. Significant predictors (p<0.10) were combined in a multivariable model.
RESULTS:
In the adjusted model, independent predictors included receipt of flu vaccination, health insurance coverage and sexual health topic discussions with sons. Sons who had received a flu shot in the last two years more frequently received at least one dose of the vaccine (OR 1.82; 95% CI 1.45-2.26). Sons covered by private health insurance had decreased odds of HPV vaccination (OR 0.56 95% CI 0.37-0.83). Lastly, parents who had discussed sexual health topics with their sons were more likely to vaccinate (OR 1.61; 95% CI 1.37-1.89).
CONCLUSIONS:
Male vaccination rates in the U.S. have increased, but males continue to be under-immunized. Utilization of health care is an important factor in HPV vaccine uptake; therefore, health care providers should use every contact as an opportunity to vaccinate. Communication about sexual health topics may provide a forum for parents and health care providers to have conversations about HPV vaccination as those more comfortable discussing these topics may also be more comfortable discussing HPV vaccination
Characterizing flows with an instrumented particle measuring Lagrangian accelerations
We present in this article a novel Lagrangian measurement technique: an
instrumented particle which continuously transmits the force/acceleration
acting on it as it is advected in a flow. We develop signal processing methods
to extract information on the flow from the acceleration signal transmitted by
the particle. Notably, we are able to characterize the force acting on the
particle and to identify the presence of a permanent large-scale vortex
structure. Our technique provides a fast, robust and efficient tool to
characterize flows, and it is particularly suited to obtain Lagrangian
statistics along long trajectories or in cases where optical measurement
techniques are not or hardly applicable.Comment: submitted to New Journal of Physic
Monte Carlo study of the Widom-Rowlinson fluid using cluster methods
The Widom-Rowlinson model of a fluid mixture is studied using a new cluster
algorithm that is a generalization of the invaded cluster algorithm previously
applied to Potts models. Our estimate of the critical exponents for the
two-component fluid are consistent with the Ising universality class in two and
three dimensions. We also present results for the three-component fluid.Comment: 13 pages RevTex and 2 Postscript figure
Knowledge politics and new converging technologies: a social epistemological perspective
The βnew converging technologiesβ refers to the prospect of advancing the human condition by the integrated study and application of nanotechnology, biotechnology, information technology and the cognitive sciences - or βNBICβ. In recent years, it has loomed large, albeit with somewhat different emphases, in national science policy agendas throughout the world. This article considers the political and intellectual sources - both historical and contemporary - of the converging technologies agenda. Underlying it is a fluid conception of humanity that is captured by the ethically challenging notion of βenhancing evolutionβ
Critical synchronization dynamics of the Kuramoto model on connectome and small world graphs
The hypothesis, that cortical dynamics operates near criticality also
suggests, that it exhibits universal critical exponents which marks the
Kuramoto equation, a fundamental model for synchronization, as a prime
candidate for an underlying universal model. Here, we determined the
synchronization behavior of this model by solving it numerically on a large,
weighted human connectome network, containing 804092 nodes, in an assumed
homeostatic state. Since this graph has a topological dimension , a real
synchronization phase transition is not possible in the thermodynamic limit,
still we could locate a transition between partially synchronized and
desynchronized states. At this crossover point we observe power-law--tailed
synchronization durations, with , away from experimental
values for the brain. For comparison, on a large two-dimensional lattice,
having additional random, long-range links, we obtain a mean-field value:
. However, below the transition of the connectome we
found global coupling control-parameter dependent exponents ,
overlapping with the range of human brain experiments. We also studied the
effects of random flipping of a small portion of link weights, mimicking a
network with inhibitory interactions, and found similar results. The
control-parameter dependent exponent suggests extended dynamical criticality
below the transition point.Comment: 12 pages, 9 figures + Supplemenraty material pdf 2 pages 4 figs, 1
table, accepted version in Scientific Report
Association of Methylentetraydrofolate Reductase (MTHFR) 677 C > T gene polymorphism and homocysteine levels in psoriasis vulgaris patients from Malaysia: a case-control study
<p>Abstract</p> <p>Background</p> <p>The methylenetetrahydrofolate reductase (MTHFR) enzyme catalyzes the reduction of 5, 10-methylenetetrahydrofolate to 5-methyltetrahydrofolate and methyl donors. The methyl donors are required for the conversion of homocysteine to methionine. Mutation of MTHFR 677 C > T disrupts its thermostability therefore leads to defective enzyme activities and dysregulation of homocysteine levels.</p> <p>Methods</p> <p>This case-control study (n = 367) was conducted to investigate the correlation of the MTHFR gene polymorphism [NM_005957] and psoriasis vulgaris amongst the Malaysian population. Overnight fasting blood samples were collected from a subgroup of consented psoriasis vulgaris patients and matched controls (n = 84) for the quantification of homocysteine, vitamin B<sub>12 </sub>and folic acid levels.</p> <p>Results</p> <p>There was no significant increase of the MTHFR 677 C > T mutation in patients with psoriasis vulgaris compared with controls (<it>Ο</it><sup>2 </sup>= 0.733, p = 0.392). No significant association between homocysteine levels and MTHFR gene polymorphism in cases and controls were observed (F = 0.91, df = 3, 80, p = 0.44). However, homocysteine levels in cases were negatively correlated with vitamin B<sub>12 </sub>(r = -0.173) and folic acid (r = -0.345) levels. Vitamin B<sub>12 </sub>and folic acid levels in cases were also negatively correlated (r = -0.164).</p> <p>Conclusions</p> <p>Our results indicate that there was no significant association between the MTHFR gene polymorphism and psoriasis vulgaris in the Malaysian population. There was no significant increase of the plasma homocysteine level in the psoriasis patients compared to the controls.</p
A Computational Study on the Role of Gap Junctions and Rod Ih Conductance in the Enhancement of the Dynamic Range of the Retina
Recent works suggest that one of the roles of gap junctions in sensory systems is to enhance their dynamic range by avoiding early saturation in the first processing stages. In this work, we use a minimal conductance-based model of the ON rod pathways in the vertebrate retina to study the effects of electrical synaptic coupling via gap junctions among rods and among AII amacrine cells on the dynamic range of the retina. The model is also used to study the effects of the maximum conductance of rod hyperpolarization activated current Ih on the dynamic range of the retina, allowing a study of the interrelations between this intrinsic membrane parameter with those two retina connectivity characteristics. Our results show that for realistic values of Ih conductance the dynamic range is enhanced by rod-rod coupling, and that AII-AII coupling is less relevant to dynamic range amplification in comparison with receptor coupling. Furthermore, a plot of the retina output response versus input intensity for the optimal parameter configuration is well fitted by a power law with exponent . The results are consistent with predictions of more theoretical works and suggest that the earliest expression of gap junctions along the rod pathways, together with appropriate values of rod Ih conductance, has the highest impact on vertebrate retina dynamic range enhancement
Soil Microbial Responses to Elevated CO2 and O3 in a Nitrogen-Aggrading Agroecosystem
Climate change factors such as elevated atmospheric carbon dioxide (CO2) and ozone (O3) can exert significant impacts on soil microbes and the ecosystem level processes they mediate. However, the underlying mechanisms by which soil microbes respond to these environmental changes remain poorly understood. The prevailing hypothesis, which states that CO2- or O3-induced changes in carbon (C) availability dominate microbial responses, is primarily based on results from nitrogen (N)-limiting forests and grasslands. It remains largely unexplored how soil microbes respond to elevated CO2 and O3 in N-rich or N-aggrading systems, which severely hinders our ability to predict the long-term soil C dynamics in agroecosystems. Using a long-term field study conducted in a no-till wheat-soybean rotation system with open-top chambers, we showed that elevated CO2 but not O3 had a potent influence on soil microbes. Elevated CO2 (1.5Γambient) significantly increased, while O3 (1.4Γambient) reduced, aboveground (and presumably belowground) plant residue C and N inputs to soil. However, only elevated CO2 significantly affected soil microbial biomass, activities (namely heterotrophic respiration) and community composition. The enhancement of microbial biomass and activities by elevated CO2 largely occurred in the third and fourth years of the experiment and coincided with increased soil N availability, likely due to CO2-stimulation of symbiotic N2 fixation in soybean. Fungal biomass and the fungiβΆbacteria ratio decreased under both ambient and elevated CO2 by the third year and also coincided with increased soil N availability; but they were significantly higher under elevated than ambient CO2. These results suggest that more attention should be directed towards assessing the impact of N availability on microbial activities and decomposition in projections of soil organic C balance in N-rich systems under future CO2 scenarios
- β¦