9,715 research outputs found

    Applications of satellite technology to broadband ISDN networks

    Get PDF
    Two satellite architectures for delivering broadband integrated services digital network (B-ISDN) service are evaluated. The first is assumed integral to an existing terrestrial network, and provides complementary services such as interconnects to remote nodes as well as high-rate multicast and broadcast service. The interconnects are at a 155 Mbs rate and are shown as being met with a nonregenerative multibeam satellite having 10-1.5 degree spots. The second satellite architecture focuses on providing private B-ISDN networks as well as acting as a gateway to the public network. This is conceived as being provided by a regenerative multibeam satellite with on-board ATM (asynchronous transfer mode) processing payload. With up to 800 Mbs offered, higher satellite EIRP is required. This is accomplished with 12-0.4 degree hopping beams, covering a total of 110 dwell positions. It is estimated the space segment capital cost for architecture one would be about 190Mwhereasthesecondarchitecturewouldbeabout190M whereas the second architecture would be about 250M. The net user cost is given for a variety of scenarios, but the cost for 155 Mbs services is shown to be about $15-22/minute for 25 percent system utilization

    Space-charge-limited flows in the quantum regime

    Full text link
    This paper reviews the recent developments of space-charge-limited (SCL) flow or Child-Langmuir (CL) law in the quantum regime. According to the classical CL law for planar diodes, the current density scales as 3/23∕2’s power of gap voltage and to the inverse squared power of gap spacing. When the electron de Broglie wavelength is comparable or larger than the gap spacing, the classical SCL current density is enhanced by a large factor due to electron tunneling and exchange-correlation effects, and there is a new quantum scaling for the current density, which is proportional to the 1/21∕2’s power of gap voltage, and to the inverse fourth-power of gap spacing. It is also found that the classical concepts of the SCL flow such as bipolar flow, transit time, beam-loaded capacitance, emitted charge density, and magnetic insulation are no longer valid in quantum regime. In the quantum regime, there exists a minimum transit time of the SCL flows, in contrast to the classical solution. By including the surface properties of the emitting surface, there is a threshold voltage that is required to obtain the quantum CL law. The implications of the Fowler-Nordheim-like field emission in the presence of intense space charge over the nanometer scale is discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87757/2/056701_1.pd

    Vortex Formation in Two-Dimensional Bose Gas

    Get PDF
    We discuss the stability of a homogeneous two-dimensional Bose gas at finite temperature against formation of isolated vortices. We consider a patch of several healing lengths in size and compute its free energy using the Euclidean formalism. Since we deal with an open system, which is able to exchange particles and angular momentum with the rest of the condensate, we use the symmetry-breaking (as opposed to the particle number conserving) formalism, and include configurations with all values of angular momenta in the partition function. At finite temperature, there appear sphaleron configurations associated to isolated vortices. The contribution from these configurations to the free energy is computed in the dilute gas approximation. We show that the Euclidean action of linearized perturbations of a vortex is not positive definite. As a consequence the free energy of the 2D Bose gas acquires an imaginary part. This signals the instability of the gas. This instability may be identified with the Berezinskii, Kosterlitz and Thouless (BKT) transition.Comment: RevTeX, 13 pages, 3 figure

    Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals (NO_3)

    Get PDF
    Secondary organic aerosol (SOA) formation from the reaction of isoprene with nitrate radicals (NO3) is investigated in the Caltech indoor chambers. Experiments are performed in the dark and under dry conditions (RH<10%) using N2O5 as a source of NO3 radicals. For an initial isoprene concentration of 18.4 to 101.6 ppb, the SOA yield (defined as the ratio of the mass of organic aerosol formed to the mass of parent hydrocarbon reacted) ranges from 4.3% to 23.8%. By examining the time evolutions of gas-phase intermediate products and aerosol volume in real time, we are able to constrain the chemistry that leads to the formation of low-volatility products. Although the formation of ROOR from the reaction of two peroxy radicals (RO2) has generally been considered as a minor channel, based on the gas-phase and aerosol-phase data it appears that RO2+RO2 reaction (self reaction or cross-reaction) in the gas phase yielding ROOR products is a dominant SOA formation pathway. A wide array of organic nitrates and peroxides are identified in the aerosol formed and mechanisms for SOA formation are proposed. Using a uniform SOA yield of 10% (corresponding to Mo≅10 μg m−3), it is estimated that ~2 to 3 Tg yr−1 of SOA results from isoprene + NO3. The extent to which the results from this study can be applied to conditions in the atmosphere depends on the fate of peroxy radicals (i.e. the relative importance of RO2+RO2 versus RO2+NO3 reactions) in the nighttime troposphere

    Born Effective Charges and Infrared Response of LiBC

    Full text link
    Calculations of the zone center optical mode frequencies (including LO-TO splitting), Born effective charges Zαα^*_{\alpha\alpha} for each atom, dielectric constants ϵ0\epsilon_{0} and ϵ\epsilon_{\infty}, and the dielectric response in the infrared, using density functional linear response theory, are reported. Calculated Raman modes are in excellent agreement with experimental values (170 cm1^{-1} and 1170 cm1^{-1}), while it will require better experimental data to clarify the infrared active mode frequencies. The Born effective charges Zαα^*_{\alpha \alpha} (i) have surprisingly different values for B and C, and (ii) show considerable anisotropy. Relationships between the effective charges and LO-TO splitting are discussed, and the predicted reflectivity in the range 0 -- 1400 cm1^{-1} is presented. These results hold possible implications for Li removal in LiBC, and C substition for B in MgB2_2.Comment: 6 pages, 3 figure

    Effects of metallic spacer in layered superconducting Sr2(Mgy_yTi1y_{1-y})O3FeAs

    Full text link
    The highly two-dimensional superconducting system Sr2(Mgy_yTi1y_{1-y})O3FeAs, recently synthesized in the range of 0.2 < y < 0.5, shows an Mg concentration-dependent TcT_c. Reducing the Mg concentration from y=0.5 leads to a sudden increase in TcT_c, with a maximum TcT_c ~40 K at y=0.2. Using first principles calculations, the unsynthesized stoichiometric y=0 and the substoichiometric y=0.5 compounds have been investigated. For the 50% Mg-doped phase (y=0.5), Sr2(Mgy_yTi1y_{1-y})O3 layers are completely insulating spacers between FeAs layers, leading to the fermiology such as that found for other Fe pnictides. At y=0, representing a phase with metallic Sr2TiO3 layers, the Γ\Gamma-centered Fe-derived Fermi surfaces (FSs) considerably shrink or disappear. Instead, three Γ\Gamma-centered Ti FSs appear, and in particular two of them have similar size, like in MgB2. Interestingly, FSs have very low Fermi velocity in large fractions: the lowest being 0.6×106\times10^6 cm/s. Furthermore, our fixed spin moment calculations suggest the possibility of magnetic ordering, with magnetic Ti and nearly nonmagnetic Fe ions. These results indicate a crucial role of Sr2(Mgy_yTi1y_{1-y})O3 layers in this superconductivity.Comment: 7 pages; Proceedings of ICSM-201

    Effect of NOx level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes

    Get PDF
    Secondary organic aerosol (SOA) formation from the photooxidation of one monoterpene (α-pinene) and two sesquiterpenes (longifolene and aromadendrene) is investigated in the Caltech environmental chambers. The effect of NOx on SOA formation for these biogenic hydrocarbons is evaluated by performing photooxidation experiments under varying NOx conditions. The NOx dependence of α-pinene SOA formation follows the same trend as that observed previously for a number of SOA precursors, including isoprene, in which SOA yield (defined as the ratio of the mass of organic aerosol formed to the mass of parent hydrocarbon reacted) decreases as NOx level increases. The NOx dependence of SOA yield for the sesquiterpenes, longifolene and aromadendrene, however, differs from that determined for isoprene and α-pinene; the aerosol yield under high-NOx conditions substantially exceeds that under low-NOx conditions. The reversal of the NOx dependence of SOA formation for the sesquiterpenes is consistent with formation of relatively low-volatility organic nitrates, and/or the isomerization of large alkoxy radicals leading to less volatile products. Analysis of the aerosol chemical composition for longifolene confirms the presence of organic nitrates under high-NOx conditions. Consequently the formation of SOA from certain biogenic hydrocarbons such as sesquiterpenes (and possibly large anthropogenic hydrocarbons as well) may be more efficient in polluted air
    corecore