3,969 research outputs found

    A Side of Mercury Not Seen By Mariner 10

    Get PDF
    More than 60,000 images of Mercury were taken at ~29 deg elevation during two sunrises, at 820 nm, and through a 1.35 m diameter off-axis aperture on the SOAR telescope. The sharpest resolve 0.2" (140 km) and cover 190-300 deg longitude -- a swath unseen by the Mariner 10 spacecraft -- at complementary phase angles to previous ground-based optical imagery. Our view is comparable to that of the Moon through weak binoculars. Evident are the large crater Mozart shadowed on the terminator, fresh rayed craters, and other albedo features keyed to topography and radar reflectivity, including the putative huge ``Basin S'' on the limb. Classical bright feature Liguria resolves across the northwest boundary of the Caloris basin into a bright splotch centered on a sharp, 20 km diameter radar crater, and is the brightest feature within a prominent darker ``cap'' (Hermean feature Solitudo Phoenicis) that covers the northern hemisphere between longitudes 140-250 deg. The cap may result from space weathering that darkens via a magnetically enhanced flux of the solar wind, or that reddens low latitudes via high solar insolation.Comment: 7 pages, 4 PDF figures, pdfLaTeX, typos corrected, Fig. 2 modified slightly to add crater diameters not given in published versio

    Determination of complex dielectric functions of ion implanted and implanted‐annealed amorphous silicon by spectroscopic ellipsometry

    Get PDF
    Measuring with a spectroscopic ellipsometer (SE) in the 1.8–4.5 eV photon energy region we determined the complex dielectric function (Ï” = Ï”1 + iÏ”2) of different kinds of amorphous silicon prepared by self‐implantation and thermal relaxation (500 °C, 3 h). These measurements show that the complex dielectric function (and thus the complex refractive index) of implanted a‐Si (i‐a‐Si) differs from that of relaxed (annealed) a‐Si (r‐a‐Si). Moreover, its Ï” differs from the Ï” of evaporated a‐Si (e‐a‐Si) found in the handbooks as Ï” for a‐Si. If we use this Ï” to evaluate SE measurements of ion implanted silicon then the fit is very poor. We deduced the optical band gap of these materials using the Davis–Mott plot based on the relation: (Ï”2E2)1/3 ∌ (E− Eg). The results are: 0.85 eV (i‐a‐Si), 1.12 eV (e‐a‐Si), 1.30 eV (r‐a‐Si). We attribute the optical change to annihilation of point defects

    Two-body effects in the decay rate of atomic levels

    Get PDF
    Recoil corrections to the atomic decay rate are considered in the order of Zm/M . The expressions are treated exactly without any expansion over Z alpha. The expressions obtained are valid both for muonic atoms (for which they contribute on the level of a few percent in high Z ions) and for electronic atoms. Explicit results for Lyman-alpha transitions for low-Z of the order (Zm/M)(Z alpha)^2 are also presented.Comment: 5 pages, 1 table, email: [email protected]

    Stellar Dynamics and the implications on the merger evolution in NGC6240

    Full text link
    We report near-infrared integral field spectroscopy of the luminous merging galaxy NGC 6240. Stellar velocities show that the two K-band peaks separated by 1.6arcsec are the central parts of inclined, rotating disk galaxies with equal mass bulges. The dynamical masses of the nuclei are much larger than the stellar mass derived from the K-band light, implying that the progenitor galaxies were galaxies with massive bulges. The K-band light is dominated by red supergiants formed in the two nuclei in starbursts, triggered ~2x10^7 years ago, possibly by the most recent perigalactic approach. Strong feedback effects of a superwind and supernovae are responsible for a short duration burst (~5x10^6 years) which is already decaying. The two galaxies form a prograde-retrograde rotating system and from the stellar velocity field it seems that one of the two interacting galaxies is subject to a prograde encounter. Between the stellar nuclei is a prominent peak of molecular gas (H_2, CO). The stellar velocity dispersion peaks there indicating that the gas has formed a local, self-gravitating concentration decoupled from the stellar gravitational potential. NGC 6240 has previously been reported to fit the paradigm of an elliptical galaxy formed through the merger of two galaxies. This was based on the near-infrared light distribution which follows a r^1/4-law. Our data cast strong doubt on this conclusion: the system is by far not relaxed, rotation plays an important role, as does self-gravitating gas, and the near-infrared light is dominated by young stars.Comment: 34 pages, 11 figures, using AASTEX 5.0rc3.1, paper submitted to the Astrophysical Journal, revised versio

    Kinetic Enhancement of Raman Backscatter, and Electron Acoustic Thomson Scatter

    Get PDF
    1-D Eulerian Vlasov-Maxwell simulations are presented which show kinetic enhancement of stimulated Raman backscatter (SRBS) due to electron trapping in regimes of heavy linear Landau damping. The conventional Raman Langmuir wave is transformed into a set of beam acoustic modes [L. Yin et al., Phys. Rev. E 73, 025401 (2006)]. For the first time, a low phase velocity electron acoustic wave (EAW) is seen developing from the self-consistent Raman physics. Backscatter of the pump laser off the EAW fluctuations is reported and referred to as electron acoustic Thomson scatter. This light is similar in wavelength to, although much lower in amplitude than, the reflected light between the pump and SRBS wavelengths observed in single hot spot experiments, and previously interpreted as stimulated electron acoustic scatter [D. S. Montgomery et al., Phys. Rev. Lett. 87, 155001 (2001)]. The EAW is strongest well below the phase-matched frequency for electron acoustic scatter, and therefore the EAW is not produced by it. The beating of different beam acoustic modes is proposed as the EAW excitation mechanism, and is called beam acoustic decay. Supporting evidence for this process, including bispectral analysis, is presented. The linear electrostatic modes, found by projecting the numerical distribution function onto a Gauss-Hermite basis, include beam acoustic modes (some of which are unstable even without parametric coupling to light waves) and a strongly-damped EAW similar to the observed one. This linear EAW results from non-Maxwellian features in the electron distribution, rather than nonlinearity due to electron trapping.Comment: 15 pages, 16 figures, accepted in Physics of Plasmas (2006

    Obliquely propagating electromagnetic waves in magnetized kappa plasmas

    Get PDF
    Velocity distribution functions (VDFs) that exhibit a power-law dependence on the high-energy tail have been the subject of intense research by the plasma physics community. Such functions, known as kappa or superthermal distributions, have been found to provide a better fitting to the VDFs measured by spacecraft in the solar wind. One of the problems that is being addressed on this new light is the temperature anisotropy of solar wind protons and electrons. In the literature, the general treatment for waves excited by (bi-)Maxwellian plasmas is well-established. However, for kappa distributions, the wave characteristics have been studied mostly for the limiting cases of purely parallel or perpendicular propagation, relative to the ambient magnetic field. Contributions to the general case of obliquely-propagating electromagnetic waves have been scarcely reported so far. The absence of a general treatment prevents a complete analysis of the wave-particle interaction in kappa plasmas, since some instabilities can operate simultaneously both in the parallel and oblique directions. In a recent work, Gaelzer and Ziebell [J. Geophys. Res. 119, 9334 (2014)] obtained expressions for the dielectric tensor and dispersion relations for the low-frequency, quasi-perpendicular dispersive Alfv\'en waves resulting from a kappa VDF. In the present work, the formalism introduced by Ref. 1 is generalized for the general case of electrostatic and/or electromagnetic waves propagating in a kappa plasma in any frequency range and for arbitrary angles. An isotropic distribution is considered, but the methods used here can be easily applied to more general anisotropic distributions, such as the bi-kappa or product-bi-kappa.Comment: Accepted for publication in Physics of Plasmas; added references for section

    The optically-powerful quasar E1821+643 is associated with a 300-kpc scale FRI radio structure

    Get PDF
    We present a deep image of the optically-powerful quasar E1821+643 at 18cm made with the Very Large Array (VLA). This image reveals radio emission, over 280 kpc in extent, elongated way beyond the quasar's host galaxy. Its radio structure has decreasing surface brightness with increasing distance from the bright core, characteristic of FRI sources (Fanaroff & Riley 1974). Its radio luminosity at 5GHz falls in the classification for `radio-quiet' quasars (it is only 10^23.9 W/Hz/sr; see e.g. Kellermann et al 1994). Its radio luminosity at 151MHz (which is 10^25.3 W/Hz/sr) is at the transition luminosity observed to separate FRIs and FRIIs. Hitherto, no optically-powerful quasar had been found to have a conventional FRI radio structure. For searches at low-frequency this is unsurprising given current sensitivity and plausible radio spectral indices for radio-quiet quasars. We demonstrate the inevitability of the extent of any FRqI radio structures being seriously under-estimated by existing targetted follow-up observations of other optically-selected quasars, which are typically short exposures of z > 0.3 objects, and discuss the implications for the purported radio bimodality in quasars. The nature of the inner arcsec-scale jet in E1821+643, together with its large-scale radio structure, suggest that the jet-axis in this quasar is precessing (cf. Galactic jet sources such as SS433). A possible explanation for this is that its central engine is a binary whose black holes have yet to coalesce. The ubiquity of precession in `radio-quiet' quasars, perhaps as a means of reducing the observable radio luminosity expected in highly-accreting systems, remains to be established.Comment: Accepted by ApJ Letters; higher quality versions of figures available at http://www-astro.physics.ox.ac.uk/~km

    A Puzzling X-Ray Source Found in the chandra Deep Field South

    Full text link
    In this letter we report the detection of an extremely strong X-ray emission line in the 940ks chandra ACIS-I spectrum of CXO CDFS J033225.3-274219. The source was identified as a Type1 AGN at redshift of z = 1.617, with 2.0 -- 10.0 keV rest frame X-ray luminosity of ~ 10^44 ergs s^-1. The emission line was detected at 6.2^{+0.2}_{-0.1} keV, with an equivalent width (EW) of 4.4^{+3.2}_{-1.4} keV, both quantities referring to the observed frame. In the rest frame, the line is at 16.2^{+0.4}_{-0.3} keV with an EW of 11.5^{+8.3}_{-3.7} keV. An X-ray emission line at similar energy (~ 17 keV, rest frame) in QSO PKS 2149-306 was discovered before using ASCA data. We reject the possibility that the line is due to a statistical or instrumental artifact. The line is most likely due to blueshifted Fe-K emission from an relativistic outflow, probably an inner X-ray jet, with velocities of the order of ~ 0.6-0.7c. Other possible explanations are also discussed

    On Quartet Superfluidity of Fermionic Atomic Gas

    Full text link
    Possibility of a quartet superfluidity in fermionic systems is studied as a new aspect of atomic gas at ultra low temperatures. The four-fold degeneracy of hyperfine state and moderate coupling is indispensable for the quartet superfluidity to occur. Possible superconductivity with quartet condensation in electron systems is discussed.Comment: 7 pages, 1 figure. J. Phys. Soc. Jpn. vol.74 (2005) No.7, in press; Note added for related previous works; some typographic errors revise
    • 

    corecore