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Obliquely propagating electromagnetic waves in magnetized kappa plasmas
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Velocity distribution functions (VDFs) that exhibit a power-law dependence on the high-energy

tail have been the subject of intense research by the plasma physics community. Such functions,

known as kappa or superthermal distributions, have been found to provide a better fitting to the

VDFs measured by spacecraft in the solar wind. One of the problems that is being addressed on

this new light is the temperature anisotropy of solar wind protons and electrons. In the literature,

the general treatment for waves excited by (bi-)Maxwellian plasmas is well-established. However,

for kappa distributions, the wave characteristics have been studied mostly for the limiting cases of

purely parallel or perpendicular propagation, relative to the ambient magnetic field. Contributions

to the general case of obliquely propagating electromagnetic waves have been scarcely reported

so far. The absence of a general treatment prevents a complete analysis of the wave-particle

interaction in kappa plasmas, since some instabilities can operate simultaneously both in the

parallel and oblique directions. In a recent work, Gaelzer and Ziebell [J. Geophys. Res. 119, 9334

(2014)] obtained expressions for the dielectric tensor and dispersion relations for the

low-frequency, quasi-perpendicular dispersive Alfv�en waves resulting from a kappa VDF. In

the present work, the formalism is generalized for the general case of electrostatic and/or

electromagnetic waves propagating in a kappa plasma in any frequency range and for arbitrary

angles. An isotropic distribution is considered, but the methods used here can be easily applied

to more general anisotropic distributions such as the bi-kappa or product-bi-kappa. VC 2016
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4941260]

I. INTRODUCTION

A significant effort has been made in recent years on the

study of the properties of plasmas composed by particles

described by the so-called superthermal or kappa velocity

distribution functions (jVDFs). These distributions distin-

guish themselves from the usual Maxwell-Bolzmann VDF

by the presence of a tail (the high-velocity portion of the

VDF) that decays with velocity according to a power law,

instead of the Gaussian profile characteristic of the

Maxwellian distribution.

Various space plasma environments, such as planetary

magnetospheres, the solar corona, or the solar wind, are com-

posed by particles whose observed VDFs are better fitted by

a kappa or by combinations of kappa distributions, instead of

any possible combination of Maxwellians.1–4 The morpho-

logical distinction between a Maxwellian VDF and a kappa

VDF is not a mere mathematical or observational curiosity.

As a consequence of this difference, the physical processes

that occur inside these environments are strongly influenced

by the particular profile of the distribution and can signifi-

cantly differ from the behavior one would expect from a

quasi-thermal plasma.

Evidence of the importance of the particular morphol-

ogy of superthermal distributions has been appearing in the

literature during the last decade. Just to cite some examples,

kappa distributions were employed by Vi~nas et al.5 to pro-

vide a better description of the plasma resonances observed

in Earth’s magnetosphere. Recent studies concerning the

quasi-thermal emission of magnetized plasmas resulting

from the single-particle fluctuations have revealed distinctive

differences whether the VDF is (bi-) Maxwellian or (bi-)

kappa.6–11 Simultaneously, several other studies have been

conducted concerning the wave-particle resonance in

Maxwellian or kappa plasmas, both in the low- and in the

high-frequency regions of parallel-propagating waves.12–22

The last couple of research subjects are relevant to the prob-

lem of the observed temperature anisotropy of both elec-

tronic and protonic populations of the solar wind. In

laboratory and tokamak plasmas, kappa distributions have

also been used to address discrepancies between experiments

and theory when Maxwellian VDFs are employed.23

Important problems, such as cyclotron heating and wave res-

onance with runaway (or superthermal) electrons, have been

considered by this approach.24,25 Finally, it has been also

observed that in a dusty plasma, the excess of superthermal

plasma particles not only affects the wave-resonance charac-

teristics (dispersion relations and damping/growth rates) but

also alters the resulting electrical charge of the dust particles

as well.26–31

Some theories have been proposed to address the origin

of jVDFs from a fundamental set of postulates. The most

accepted explanation nowadays is based on the principle of

nonadditive entropy proposed by Tsallis.32 According to

Tsallis’s postulate, many-particle physical systems that

evolve subjected to long-scale correlations and nonlinear

effects can reach a quasi-stationary (or truly stationary) state

in which the probability distribution functions of the physical
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quantities (such as the VDF) are not given by a Boltzmann

distribution, but rather by probability functions that arise

from the maximization of the nonadditive q-entropy pro-

posed by Tsallis. A detailed account about the appearance of

the jVDF as a consequence of the q-entropic principle and

the resulting implications for space (or laboratory) plasma

physics was given by Livadiotis and McComas.33 Some of

the alternative or related theories proposed in recent years

are briefly mentioned in Ref. 34.

During the last generation, the yearly number of papers

published on the subject of kappa distributions has been

growing by a measurable exponential law.33 In spite of the

evident interest of the plasma community (mostly by space

physicists) on kappa distributions, the overwhelming major-

ity of papers concerned with the propagation and absorption/

amplification of electrostatic/electromagnetic waves in

superthermal magnetized plasmas has been restricted to the

particular case of parallel propagation (relative to the ambi-

ent magnetic field).35

The more general case of obliquely propagating waves

has been tackled by relatively few works so far. A basic for-

malism was proposed by Summers et al.36 In their work,

however, the results were mostly obtained by numerical inte-

grations. A similar approach was later adopted by Basu37

and Liu et al.38 Important as these works are, the evaluation

of the dielectric tensor components via numerical quadra-

tures hampers the derivation of analytical expressions for the

dispersion relations and damping/growth rates. Moreover,

the analytical results obtained by the above authors were

derived from power series expansions that do not account for

all the possible mathematical properties of the dielectric ten-

sor, as will be demonstrated below.

Recently, Gaelzer and Ziebell34 proposed for the first

time a mathematical formulation for dispersive Alfv�en

waves (DAWs), which are low-frequency, quasi-perpendicu-

lar waves propagating, in this case, in an isotropic kappa

plasma. The proposed formulation obtains analytical expres-

sions for the dielectric tensor components in terms of closed-

form special functions that describe both the wave-particle

resonance and the Larmor radius effects due to a superther-

mal VDF on the characteristics of the dispersive Alfv�en

waves. The formalism that was introduced in Ref. 34 ren-

dered the problem of wave propagation more tractable, and

new expressions for the dispersion relations of DAWs were

in consequence obtained.

More recently, Astfalk et al.39 reported the numerical

implementation of the method proposed in Ref. 36 to study

wave propagation at arbitrary angles in anisotropic super-

thermal plasmas described by a bi-kappa VDF.

Even more recently, Sugiyama et al.40 implemented a

dispersion equation solver for electromagnetic ion-cyclotron

waves propagating at arbitrary angles in a kappa-Maxwellian

plasma. From the purely mathematical point of view, the

treatment of kappa-Maxwellian VDFs is simpler than iso-

tropic kappa distributions, since in the former the depend-

ence of the distribution function on the parallel component

of the particle velocity (given by a jVDF) factors from the

dependence on the perpendicular component, which is

Maxwellian. Such simplification is not possible with an iso-

tropic jVDF.

In this work, the initial formulation proposed by Gaelzer

and Ziebell34 is generalized for any number of particle spe-

cies, wave frequency range, and propagation angle. A thor-

ough and comprehensive analysis is conducted on the

mathematical aspects and properties of the dielectric tensor

components for an isotropic kappa distribution function,

which are described by analytical, closed-form expressions.

The said components are given by special functions for a

kappa plasma that are either generalizations of already

known expressions or are completely new definitions. As a

demonstration on the feasibility of the proposed formalism,

the dispersion equation is solved for high-frequency waves

propagating in various angles and for several values of the j
parameter.

This paper is organized as follows. In Section II, the

velocity distribution function and the dispersion equation for

waves in a kappa plasma are considered. The dielectric ten-

sor components are written in terms of (thermal) Stix param-

eters. Section III contains the bulk of the formalism. In there,

the special functions that appear in the dielectric tensor for a

kappa plasma are discussed in detail. Section IV describes a

simple implementation of the formalism presented in Secs. II

and III. Finally, Section V contains the conclusions.

Additional and supporting materials are provided in

Appendixes A–C.

II. THEORETICAL FORMULATION

A. The velocity distribution function

Calling fa(v) the VDF for the plasma species a, we will

adopt in this work the isotropic kappa VDF form already

introduced in Ref. 34

fj;a vð Þ ¼
1

p3=2w3
a

j�3=2
a C rað Þ

C ra � 3=2ð Þ 1þ v2

jaw2
a

 !�ra

; (1)

which is valid when ra> 3/2. In (1), v is the particle’s veloc-

ity, ra¼jaþ aa, where ja is the kappa index for the a-th

species and aa is a free real parameter, wa¼wa(ja) is another

parameter with the same physical dimension and meaning as

the particle’s thermal speed and which depends on the j pa-

rameter. Finally, C(z) is the gamma function.

For all practical purposes, it is assumed in this work

the jVDF form first proposed by Summers and Thorne,41

which can be obtained from (1) by setting aa¼ 1 and

w2
a ¼ ð1� 3=2jaÞv2

Ta, where v2
Ta ¼ 2Ta=ma is the thermal

speed of species a with mass ma and temperature Ta (in

energy dimension). For any application of the general for-

malism presented in this work, which assumes an isotropic

kappa distribution for a given species, the general form given

in Eq. (1) reduces to the particular form introduced by

Summers and Thorne (hereafter called the ST91 model) with

the choices just given. Nevertheless, the index aa will be

kept throughout this work because it can be useful in order

to extend the formalism for anisotropic jVDFs, such as the

bi-kappa42 or product-bi-kappa42,43 models. The specific
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value of the a-parameter may then depend on the dimension-

ality of the distribution and on the correlation between the

different degrees of freedom of the plasma particles.43

The distribution (1) contains the expected limiting form

of the Maxwell-Boltzmann distribution, fM;aðvÞ ¼ p�3=2v�3
Ta

exp ð�v2=v2
TaÞ, when ja ! 1. This property is easily veri-

fied by using the exponential limit

lim
j!1

1þ y2

j

� ��j

¼ e�y2

(2)

and Stirling’s formula.44,68 This process of limit evaluation

will be dubbed here as the Maxwellian limit.
The ST91 form has the additional property that the

kinetic temperature of the a-th species, defined from the

second moment of the distribution by TK;a ¼ 1
3

mahv2i
¼ 1

3
ma

Ð
d3v v2fj;a vð Þ, equals the thermodynamic measure of

temperature, i.e., TK,a¼ Ta.33,43 This is an important prop-

erty, since a single macroscopic parameter, namely, Ta, can

be used to measure the velocity spread of plasma species, in-

dependent on the particular value of the j parameter

(1/2< j<1). Moreover, the ST91 form is also the most

probable velocity distribution function for a kappa plasma,

as obtained from Tsallis’s entropic principle.33,43 This is

another important property, since it establishes a theoretical

background with nonequilibrium statistical mechanics.

These are the main reasons why the ST91 form is by far the

most frequently employed to describe kappa plasmas.

B. The dispersion equation

Starting from the well-known expression for the dielec-

tric tensor of a homogeneous magnetized plasma45

eij k;xð Þ ¼ dij þ
X

a

x2
pa

x2

X1
n!�1

ð
d3v

v? Nnað Þi N�na

� �
j
Lfa

x� nXa � kkvk

"

þ dizdjz

ð
d3v

vk
v?

Lfa

�
; (3)

where {i,j}¼ {x, y, z} identifies the Cartesian (in the E3

space) components of eij, with fx̂; ŷ; ẑg being the basis vec-

tors of E3, Nna ¼ nq�1
a JnðqaÞx̂ � iJ0nðqaÞŷ þ ðvk=v?ÞJnðqaÞẑ,

where Jn(z) is the Bessel function of the first kind,46

qa ¼ k?v?=Xa; Lfa ¼ v?@fa=@vk � vk@fa=@v?, and Lfa
¼ x@fa=@v? þ kkLfa. Also, x2

pa ¼ 4pnaq2
a=ma and

Xa¼ qaB0/mac are the plasma and cyclotron frequencies of

the a-th species, respectively, x and k ¼ k?x̂ þ kkẑ are the

wave frequency and wavenumber, B0 ¼ B0ẑ (B0> 0) is the

ambient magnetic induction field, and the symbols k(?)

denote the usual parallel (perpendicular) components of vec-

tors/tensors, respective to B0.

The wave equation in Fourier space can be written as

Kijðk;xÞEjðk;xÞ ¼ 0, where the Einstein convention of

implicit sum over repeated indices is adopted, Kijðk;xÞ ¼
NiNj � N2dij þ eijðk;xÞ is the dispersion tensor, and where

N¼ kc/x is the refractive index. Finally, the dispersion rela-

tions are the solutions of the dispersion equation

Kðk;xÞ ¼ detðKijÞ ¼ 0: (4)

There are several known approximations and different

expressions for the dispersion equation, depending on physi-

cal parameters and propagation characteristics such as wave

frequency range, propagation angle, and plasma species.

Since this work develops a general formulation for wave

propagation in kappa plasmas, valid for any such characteris-

tics, a general form for the dispersion equation will be

employed which, albeit possibly not the more adequate for a

particular situation, was nevertheless able to provide initial

explicit results from the formalism.

With this objective in mind, it was found more conven-

ient to change the reference frame from the Cartesian to a

rotated frame, in which the usual limiting expressions for

parallel or perpendicular propagation angles are readily iden-

tified. In the rotated frame, the dielectric tensor components

are given by45

eþþ ¼
1

2
exx þ eyyð Þ � iexy eþ� ¼

1

2
exx � eyyð Þ

e�� ¼
1

2
exx þ eyyð Þ þ iexy eþk ¼

1ffiffiffi
2
p exz þ ieyzð Þ

ekk ¼ ezz e�k ¼
1ffiffiffi
2
p exz � ieyzð Þ;

(5)

in terms of the Cartesian components.

Finally, the rotated components can be expressed in

terms of the thermal Stix parameters L̂; R̂; P̂; ŝ; l̂, and �̂
as45

eþþ ¼ L̂ � N2
�ðŝ � 1Þ e�� ¼ R̂ � N2

þðŝ � 1Þ
ekk ¼ P̂ eþ� ¼ NþN�ðŝ � 1Þ
eþk ¼ NþNkðl̂ � 1Þ e�k ¼ N�Nkð�̂ � 1Þ;

where the first three parameters are, respectively, the usual

L̂eft, R̂ight, and P̂lasma Stix parameters (with thermal correc-

tions), which still exist in the cold plasma limit, whereas the

last three are only present when there are thermal (kinetic)

effects.47

Inserting now the kappa distribution function (1) into

Eqs. (3) and (5), one obtains, after a fair amount of algebra,

the following compact expressions for the (kappa) Stix

parameters:

L̂j

R̂j

 !
¼ 1þ

X
a

x2
pa

x2
n0a

X1
n!�1

n
n

la

6
@

@la

� �
Z aa;2ð Þ

n;ja
;

(6a)

P̂j ¼ 1�
X

a

x2
pa

x2
n0a

X1
n!�1

nna
@

@nna

Z aa;1ð Þ
n;ja

; (6b)

ŝj ¼ 1þ
X

a

x2
pa

X2
a

w2
a

c2
n0a

X1
n!�1

Y aa;2ð Þ
n;ja

; (6c)

l̂j

�̂j

 !
¼ 1� 1

2

X
a

x2
pa

xXa

w2
a

c2
n2

0a

�
X1

n!�1

@

@nna

n

la

6
@

@la

� �
Z aa;1ð Þ

n;ja
; (6d)
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where la ¼ �2
a=2; �a ¼ k?wa=Xa; nna ¼ ðx� nXaÞ=kkwa,

and where Zða;bÞn;j ðl; nÞ and Yða;bÞn;j ðl; nÞ are special functions

that will be defined a posteriori in Section III C. In the same

section, it will be shown that in the Maxwellian limit the

functions Z and Y reduce to

lim
j!1
Zða;bÞn;j ðl; nÞ ¼HnðlÞZðnÞ

lim
j!1
Yða;bÞn;j ðl; nÞ ¼H0

nðlÞZðnÞ;
(7)

where Z(f) is the usual plasma dispersion (or Fried and

Conte) function, given below by definition (10), and

HnðzÞ ¼ e�zInðzÞ (8)

is called here the (Maxwellian) plasma gyroradius function,

with In(z) being the modified Bessel function.46 The expres-

sions for the Stix parameters given in (6) in the Maxwellian

limit reduce to the well-known expressions that can be

found, e.g., in Ref. 45.

It is worth mentioning here that with the definition of

the special functions Zða;bÞn;j and Yða;bÞn;j , the Stix parameters

for a kappa plasma can be expressed in a form as compact as

the correspondent Maxwellian expressions. It will be also

shown in Section III C that these functions can always be

evaluated from analytical, closed-form expressions that do

not depend on any residual numerical integration. Therefore,

with the formulation developed in this work, the evaluation

of (6a)–(6d) can be accomplished in a computational time-

frame comparable to the usual Maxwellian limit, with no

increased overhead due to lengthy numerical quadratures.

Additionally, the analytical closed-form expressions

obtained here simplify the determination of mathematical

properties of the special functions that arise from the kappa

distribution (1), which in turn allows the derivation of

adequate approximations to the dielectric tensor and disper-

sion relations, relevant to a particular wave propagation

regime.

Finally, using the Stix parameters given in Eqs.

(6a)–(6d), the dispersion equation (4) can be cast in the fol-

lowing form:45

HX k;xð ÞHO k;xð Þ þ 1

2
N2
?N2
kK k;xð Þ ¼ 0; (9a)

where

HX k;xð Þ ¼ L̂ � N2
k

� 	
R̂ � N2

k

� 	
� N2

?
1

2
L̂ þ R̂ð Þ � N2

k


 �
ŝ;

(9b)

HOðk;xÞ ¼ P̂ � N2
?; (9c)

K k;xð Þ ¼ 1

2
N2
? �̂ þ l̂ð Þ2ŝ � L̂ � N2

k

� 	
�̂2 � R̂ � N2

k

� 	
l̂2:

(9d)

Equation (9a) is convenient because it reduces to simple

forms for limiting propagation angles. For parallel propaga-

tion (k?¼ 0), it factors into the equations for the left- and

right-handed circularly polarized modes and the longitudinal

(or plasma) mode. On the other hand, for perpendicular prop-

agation (kk¼ 0), Eq. (9a) factors into the equations for the

extraordinary and ordinary modes.

For the sake of completeness, and should the necessity

arise, the corresponding expressions for the Cartesian com-

ponents of the dielectric tensor for a kappa plasma are given

in Appendix C.

In Sec. III, the definitions and mathematical properties

of the various special functions that appear in the treatment

of a kappa plasma are discussed.

III. THE SPECIAL FUNCTIONS FOR A KAPPA PLASMA

The Stix parameters for a kappa plasma, shown in Eqs.

(6a)–(6d), are given in terms of the two-variable special

functions Zða;bÞn;j ðl; nÞ and Yða;bÞn;j ðl; nÞ. Before the proper defi-

nitions for these functions can be made, it is necessary to

give prior definitions and discuss the properties of two

related one-variable functions, namely, the superthermal
plasma dispersion function and the superthermal plasma
gyroradius function. The most important properties will be

shown in this section, with additional properties given in

Appendix A.

A. The superthermal plasma dispersion function

This special function is the equivalent, for a kappa

plasma, to the well-known plasma dispersion (Fried and

Conte) function, defined by45,48

Z nð Þ ¼ 1ffiffiffi
p
p
ð1
�1

e�y2

dy

y� n
; for ni > 0ð Þ; (10)

where ni is the imaginary part of n.

The definition of the superthermal plasma dispersion

function (jPDF) follows from the generalized expression

adopted in this work for the distribution function, Eq. (1),

and is given by

Z a;bð Þ
j nð Þ ¼ 1

p1=2jbþ1=2

C k� 1ð Þ
C r� 3=2ð Þ

�
ð1
�1

ds
1þ s2=j
� �� k�1ð Þ

s� n
;

ni > 0

k > 1

 !
: (11)

The function Z
ða;bÞ
j ðnÞ was first defined by Gaelzer and

Ziebell.34 The parameter a is the same as it appears in (1),

whereas b is another real parameter. Moreover, k¼ rþb
(r¼ jþ a). It is also noteworthy that the definition (11) is

valid for ni> 0, as is the definition of the Fried and Conte

function, but the integrand of Z
ða;bÞ
j ðnÞ has additional branch

points at s ¼ 6i
ffiffiffi
j
p

, when k is noninteger.

Again, for an isotropic jVDF, one can simply adopt the

ST91 form, set a¼ 1 and erase all reference to the parameter

a. However, the new parameter b should be kept, because its

value is related to the wave polarization. For instance, using

the ST91 form and setting b¼ 1, Eq. (11) reduces to the orig-

inal function Z�jðnÞ employed by Summers and Thorne41 and

Mace and Hellberg49 for a kappa (Lorentzian) plasma. It is

interesting to mention that the function Z�jðnÞ appears in the
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dispersion equation for longitudinal (Langmuir, ion-sound)

waves propagating in a kappa plasma along the ambient

magnetic field.

As another example, setting b¼ 0 in (11), one obtains

exactly the function ZjM(n) defined in Ref. 50 and related to

parallel-propagating electromagnetic waves in a kappa-

Maxwellian plasma, or the function Z0
jðgÞ defined in Ref. 12,

also related to circularly polarized waves propagating in a

kappa plasma.

Hence, with the definition for the function Z
ða;bÞ
j ðnÞ

given by Eq. (11), one can describe the propagation of differ-

ent waves in a magnetized kappa plasma with a single

expression, in which case the parameter b will be related to

the wave polarization and other characteristics, as will be

shown below.

Several mathematical properties of Z
ða;bÞ
j ðnÞ will be

derived in this section and in Appendix A. Some of the results

shown here are generalizations of properties previously

obtained in various works found in the literature.41,42,49–54

Particular values: Direct integration of (11) provides

special values of Z
ða;bÞ
j ðnÞ at special points.

Value at n¼ 0: At this point,

Z a;bð Þ
j 0ð Þ ¼ 1

p1=2j1=2þb

C k� 1ð Þ
C r� 3=2ð Þ

�
ð1
�1

ds s�1 1þ s2=j
� �� k�1ð Þ

;

where the integration must be done following Landau prescrip-

tion. This means that it is possible to employ Plemelj formula

to evaluate the integral, which results equal to ip. Therefore,

Z a;bð Þ
j 0ð Þ ¼ i

ffiffiffi
p
p

C k� 1ð Þ
jbþ1=2C r� 3=2ð Þ ; k > 1ð Þ: (12)

At the Maxwellian limit, one obtains Z
ða;bÞ
j ð0Þ �!j!1

i
ffiffiffi
p
p

¼ Zð0Þ as expected.

Values at n ¼ 6i
ffiffiffi
j
p

: At these points, it can be shown

that for k> 1,

ð1
�1

ds
1þ s2=j
� �1�k

s7i
ffiffiffi
j
p ¼ 6

2iffiffiffi
j
p
ð1

0

ds 1þ s2

j

� ��k

:

Since the remaining integral is a special case of Euler’s Beta

integral,44 then

Z a;bð Þ
j 6i

ffiffiffi
j
p� �

¼ 6i
j�b�1=2C k� 1=2ð Þ
k� 1ð ÞC r� 3=2ð Þ

:

Representations for Z
ða;bÞ
j ðnÞ: The jPDF has an already

well-known representation in terms of the Gauss hypergeo-

metric function 2F1
a; b
c

; z

� �
, defined in Eq. (B4). This rep-

resentation was first derived in Ref. 49 via an elegant

application of the residue theorem. An alternative and equiv-

alent derivation was already used in Refs. 26 and 34 and will

be employed again here.

First, by means of the variable transformation t� 1¼ 1

þ s2/j, the integral in (11) becomes

Z a;bð Þ
j nð Þ ¼ n

p1=2jbþ1

C k� 1ð Þ
C r� 3=2ð Þ

�
ð1

0

tk�3=2 1� tð Þ�1=2
1� 1þ n2

j

� �
t


 ��1

dt:

Identifying with the integral representation (B5), one

can write

Z a;bð Þ
j nð Þ ¼ j�b�1C k� 1=2ð Þ

k� 1ð ÞC r� 3=2ð Þ
n

�2F1
1; k� 1

2
k

; 1þ n2

j

0
@

1
A; k >

1

2

� �
: (13)

Although a valid representation of Z
ða;bÞ
j ðnÞ, its principal

branch is restricted to the sector 0 < argn � p (i.e., to

ni> 0). Hence, this is not the adequate representation when

ni� 0, in other words, it does not obey the Landau prescrip-

tion. Nevertheless, if one employs the analytic continuation

formula (B6), a valid representation is obtained, which is

shown in Eq. (A1).

For plasma physics applications, one is interested in a

mathematical representation of Z
ða;bÞ
j ðnÞ that satisfies the

Landau prescription, i.e., is continuous at the limit ni ! 0.

Moreover, it is also required that the sought representation

lends itself to the numerical evaluation of Z
ða;bÞ
j ðnÞ, as

carried out by computer programming languages such as

Fortran, C/Cþþ, or python, and/or by computer alge-

bra software. Such representations are called in this work

computable representations of the jPDF. Expression (13)

does not satisfy this requisite, but it can be used within con-

venient transformations for the Gauss function, thereby ren-

dering other representations which are indeed computable.

One such representation is obtained by inserting (13)

into the quadratic transformation (B7d), resulting

Z a;bð Þ
j nð Þ ¼ i

j�b�1=2C k� 1=2ð Þ
k� 1ð ÞC r� 3=2ð Þ

�2F1

1; 2 k� 1ð Þ
k

;
1

2
1þ in

j1=2

� �" #
: (14)

Setting a¼b¼ 1, representation (14) of Z
ð1;1Þ
j ðnÞ is exactly

the original result obtained in Ref. 49. On the other hand,

with a¼ 1 and b¼ 0, there results again the function ZjM(n)

obtained in Ref. 50. Hence, result (14) generalizes these

well-known representations.

It is important to mention at this point that although the

form (14) is indeed continuous across the real line of n, the

branch cut has not disappeared. It has just moved to the line

�
ffiffiffi
j
p
� ni > �1. Therefore, it would be necessary to eval-

uate the analytical continuation of (14), should the branch

line ever been crossed during the dynamical evolution of the

waves in the plasma. The same caveat applies to all comput-

able representations of Z
ða;bÞ
j ðnÞ found in this work.

Expression (14) is well-suited for computational pur-

poses, however, other forms are more convenient to derive

further analytical expression for Z
ða;bÞ
j ðnÞ. A representation
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that directly renders a series expansion for the jPDF is

obtained by inserting now (13) into (B7b), resulting in

Z a;bð Þ
j nð Þ ¼ � 2C k� 1=2ð Þn

jbþ1C r� 3=2ð Þ 2F1

1; k� 1=2

3=2
;� n2

j

 !

þ ip1=2C k� 1ð Þ
jbþ1=2C r� 3=2ð Þ 1þ n2

j

� �� k�1ð Þ

; (15)

also valid for k> 1/2 and where identity (B9) was also used.

This form immediately renders the power series expansion,

given in (A2).

The representation (15) is also important because its

Maxwellian limit reduces to a known representation of the

Fried and Conte function. This fact can be verified by apply-

ing the limit j!1 to (15), employing both the exponential

limit (2) and the Stirling formula, obtaining thus

Zða;bÞj ðnÞ �!j!1�2n1F1
1

3=2
;�n2

� �
þ ip1=2e�n2

:

The function 1F1
1

3=2
;�n2

� �
, according to (B2), is a

particular case of the Kummer confluent hypergeometric

function, and this result is another known representation for

the Fried and Conte function.55

The last representation for Z
ða;bÞ
j ðnÞ to be shown in this

section is obtained from (15) with the use of (B7c), resulting

in

Z a;bð Þ
j nð Þ ¼ � C k� 3=2ð Þn�1

jbC r� 3=2ð Þ 2F1

1; 1=2

5=2� k
;� j

n2

 !

þ i� tan kpð Þ½ � p1=2C k� 1ð Þ
jbþ1=2C r� 3=2ð Þ 1þ n2

j

� �1�k

;

(16)

which is now valid for k> 3/2 and k 6¼mþ 3/2, where m¼ 1,

2, …. This form is well-suited to obtain an asymptotic

approximation for Z
ða;bÞ
j ðnÞ, shown in Appendix A.

However, now there are two additional restrictions. First,

when k is semi-integer, each term has a singularity.

Fortunately, they cancel out and in Appendix A it is also

shown the expression for (16) when k¼mþ 3/2. The other

restriction appears due to the fact that now the branch line is

stretched along the whole imaginary axis �1< ni<1.

Recurrence relations: Some important recurrence rela-

tions for Z
ða;bÞ
j ðnÞ can be obtained. Performing integrations

by parts in (11), one obtains

1þ n2

j

� �
Z

aþ1;bð Þ
j nð Þ ¼ k� 1

r� 3=2
Z a;bð Þ

j nð Þ� C k� 1=2ð Þ
jbþ1C r� 1=2ð Þn;

(17a)

1þ n2

j

� �
Z

a;bþ1ð Þ
j nð Þ ¼ k� 1

j
Z a;bð Þ

j nð Þ � C k� 1=2ð Þ
jbþ2C r� 3=2ð Þ n:

(17b)

Derivatives: Deriving (11) with respect to n and then

integrating by parts, one obtains the first derivative

Z a;bð Þ0
j nð Þ ¼ �2

C k� 1=2ð Þ
jbþ1C r� 3=2ð Þ þ nZ a;bþ1ð Þ

j nð Þ

 �

: (18a)

The Maxwellian limit of (18a) is the well-known formula48

Z0ðnÞ ¼ �2½1þ nZðnÞ�.
Applying now the operator dn/dnn on (11) and integrat-

ing by parts, one arrives at a first recurrence relation for the

derivatives

Z a;bð Þ nþ1ð Þ
j nð Þ ¼ �2 nZ a;bþ1ð Þ nð Þ

j nð ÞþnZ a;bþ1ð Þ n�1ð Þ
j nð Þ

h i
¼ �2

dn

dnn nZ a;bþ1ð Þ
j nð Þ

h i
; nP1ð Þ: (18b)

The Maxwellian limit of (18b) is also a known result.56

Expressions (18a) and (18b) are useful, but they relate

Zj functions with different values of b. In order to obtain the

same-b expressions for the derivatives, one must first return

to (18a) and insert (17b) to obtain

1þn2

j

� �
Z

a;bð Þ0
j nð Þ¼�2

C k�1=2ð Þ
jbþ1C r�3=2ð Þþ

k�1

j
nZ a;bð Þ

j nð Þ

 �

:

(18c)

Deriving now both sides n� 1 times with respect to n, using

Leibniz formula for the derivative,57 and reorganizing, there

results

1þ n2

j

� �
Z

a;bð Þ00
j nð Þ ¼ �2

k� 1

j
Z a;bð Þ

j nð ÞþnZ a;bð Þ0
j nð Þ


 �
;

(18d)

1þ n2

j

� �
Z a;bð Þ nþ1ð Þ

j nð Þ ¼ � 2
kþ n� 1

j
nZ a;bð Þ nð Þ

j nð Þ



þn
k
j
þ n� 3

2j

� �
Z a;bð Þ n�1ð Þ

j nð Þ
�
;

nP2ð Þ: (18e)

A general representation for the n-th derivative of

Z
ða;bÞ
j ðnÞ is also obtainable. Applying the operator dn/dnn on

the form (14) and using the formula (B8), the following

expression if found:

Z
a;bð Þ nð Þ

j nð Þ
inþ1n!

¼ C kþ n=2� 1ð ÞC kþ n=2� 1=2ð Þ
jbþ nþ1ð Þ=2C r� 3=2ð ÞC kþ nð Þ

�2F1

nþ 1; 2 k� 1ð Þ þ n

kþ n
;
1

2
1þ in

j1=2

� �" #
:

(19)

Another representation is given in (A3).

B. The superthermal plasma gyroradius function

In the same gist that the plasma dispersion function

quantifies the (linear) wave-particle interactions in a finite-

temperature plasma, leading to substantial effects on wave

dispersion and absorption, the plasma gyroradius function
(PGF), so called in this work, affects wave propagation at
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arbitrary angles when the particle’s cyclotron (or Larmor) ra-

dius is finite.

In a thermal, Maxwellian plasma, the gyroradius func-

tion has a well-known and simple form, given in Eq. (8). In a

kappa plasma, on the other hand, despite the large number of

papers already present in the literature, the corresponding

jPGF was not categorized and systematically studied until

Ref. 34 proposed a first definition and derived some basic

properties. In this section, a more systematic study of the

jPGF is made, thereby complementing the initial formula-

tion given in Ref. 34.

Definition and basic properties: The kappa (or super-

thermal) PGF is defined by the integral

H a;bð Þ
n;j zð Þ ¼ 2

ð1
0

dx
xJ2

n yxð Þ
1þ x2=jð Þk�1

; y2 ¼ 2z
� �

; (20)

where the parameters a, b, and k are the same as for the

jPDF, whereas n¼… , �2, �1, 0, 1, 2,… is the har-

monic (of the gyrofrequency) number. For plasma

physics applications, the function Hða;bÞn;j ðzÞ describes the

effects of finite particle gyroradius, and thus the argu-

ment will be z¼ la, where la ¼ k2
?q

2
a, with qa being the

said Larmor radius.

The definition (20) is slightly different from the defini-

tion given in Ref. 34, but the significance and importance are

the same.

At the Maxwellian limit, if one employs identity (2), the

remaining integral can be found in any table of mathematical

formulae, and one readily obtains (8). Here, this limit will be

demonstrated by the general representation of the function

Hða;bÞn;j ðzÞ, which will be given below.

The first property to be derived is the value at the origin

(z¼ 0). At that point, direct integration shows that46

H a;bð Þ
n;j 0ð Þ ¼ j

k� 2
dn;0; k > 2ð Þ; (21)

where the definition of the beta function44 was also

employed, and where dn,m is the Kronecker delta.

Since J�nðzÞ ¼ ð�ÞnJnðzÞ for integer n, another straight-

forward property is Hða;bÞ�n;jðzÞ ¼ Hða;bÞn;j ðzÞ, which is shared by

the function HnðzÞ as well.

Representations for Hða;bÞn;j ðzÞ: When encumbered with

the task of finding a computable representation for Hða;bÞn;j ðzÞ,
one could argue, quite naturally, that since the function

depends on the particle gyroradius, and since in many practi-

cal applications this quantity can be considered small, a

“first-order” approximation for Hða;bÞn;j ðzÞ could be obtained

by first expanding J2
nðzÞ in a power series, and then evaluat-

ing the resulting integrals for the first few terms. This is an

usual procedure to obtain a small-Larmor-radius approxima-

tion for the function HnðzÞ.
Applying this method blindly to the jPGF, however,

one would invariably obtain a result that either imposes an

artificially high constraint on the value of the j parameter, or

is plainly incorrect, from both the mathematical and physical

points of view. The reason for this unfortunate outcome is

simple. Considering an arbitrary value for the harmonic

number n, the lowest-order approximation for the Bessel

function is46

J2
n zð Þ ’ 1

jnj!ð Þ2
z

2

� �2jnj
:

Inserting this approximation into (20), one would obtain,

to the lowest order,

H a;bð Þ
n;j zð Þ ’ jC k� jnj � 2ð Þ

2jnjjnj!C k� 1ð Þ jzð Þjnj;

which only exists for k > jnj þ 2. Higher-order terms can be

included from the series for J2
nðzÞ, with the outcome that the

term of order k> 0 will be proportional to Cðk� jnj � k �2Þ,
thereby imposing the even stricter constraint k > jnj þk þ 2.

Consequently, it would appear as if for a plasma where

Larmor radius effects are important up to order K� 0 and

thermal effects demand the inclusion of up to N� 0 harmon-

ics, the particles in such a plasma could only have a VDF

with k>NþKþ 2, where the lowest possible value is k> 2,

the constraint already imposed in Eq. (21). Moreover, the

minimum value for the parameter j, resulting from this con-

straint, would be linked with the harmonic number n. This is

an undesirable and altogether unobserved restriction to the

allowable values for the j index, which has been measured

to be as low as j ’ 2, both in the solar wind and in the

magnetosphere.1,3,4

On the other hand, recalling that the asymptotic behav-

ior of the Bessel function for large argument is46

J2
n zð Þ � 2

pz
cos2 z� 1

2
jnjp� 1

4
p

� �
� 2

pz
;

the ensuing asymptotic behavior of the integration in (20) is

H a;bð Þ
n;j zð Þ � C k� 3=2ð Þ

C k� 1ð Þ

ffiffiffiffiffiffi
2j
pz

r
;

showing the constraint k> 3/2, independent on the harmonic

number and near the observed values of j. Hence, the exact

value of the integral in (20) must always exist for any har-

monic number n, and the correct constraint imposed over j
must be independent of n and close to the small values

observed in the interplanetary environment.

Additionally, the assumption that the kappa gyroradius

function can be somehow expressed as a simple power se-

ries, as is the case with the function HnðzÞ, is simply incor-

rect. As it will be shown below, for certain values of the k
(or j) parameter, the function Hða;bÞn;j ðzÞ displays a logarith-

mic behavior, not present in the Maxwellian PGF. It will

also be shown that even when Hða;bÞn;j ðzÞ is represented by a

power series, the lowest-order terms contain a contribution

proportional to a noninteger power. These terms are com-

pletely overlooked by the simplified approach described

above. As a consequence, even if one could argue that the j
parameter is small enough to justify a power-series approxi-

mation from the outset, the result would be incorrect due to

the lacking terms.

Therefore, it is the contention in this work, as it was in

Ref. 34, that approximate expressions for the kappa
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gyroradius function can only be sought after an exact,

closed-form representation is found. It is that representation

that will provide the mathematically (and physically) correct

approximation for the function.

Starting again from definition (20), the gyroradius func-

tion Hða;bÞn;j ðzÞ will now be represented in terms of the Meijer

G-function discussed in Appendix B 2. First, inserting repre-

sentation (B15c) into (20), one can write

H a;bð Þ
n;j zð Þ ¼ jk�1ffiffiffi

p
p

ð1
0

dw

G1;1
1;3 2zw

���1=2

n;�n;0


 �
jþ wð Þk�1

;

after a simple transformation of variable. Identifying this inte-

gral in formula (B12) and using identity (B11b), there results

H a;bð Þ
n;j zð Þ ¼

p�1=2j

C k� 1ð ÞG
2;1
1;3 2jz

���1=2

k�2;n;�n


 �
: (22)

Formula (22) is the exact, closed-form representation of

the kappa plasma gyroradius function. According to the defi-

nition of the G-function, the only restriction imposed in (22)

is k 6¼ 3/2, 1/2,� 1/2,…. Hence, the overall constraint

imposed over k is still determined in (21), namely, k> 2. For

the ST91 form, this implies that j> 0 or 1, depending solely

on the parameter b and quite within the measured values for

j in the solar wind VDFs.

Using formula (22) and the definition (B10), one obtains

another proof of the Maxwellian limit. Accordingly,

lim
j!1
H a;bð Þ

n;j zð Þ ¼
1ffiffiffi
p
p 1

2pi

ð
L

ds
C n� sð ÞC 1=2þ sð Þ

C 1þ nþ sð Þ

� lim
j!1

jC k� 2� sð Þ
C k� 1ð Þ 2jzð Þs

" #

¼ 1ffiffiffi
p
p 1

2pi

ð
L

C n� sð ÞC 1=2þ sð Þ
C 1þ nþ sð Þ 2zð Þsds

¼ 1ffiffiffi
p
p G1;1

1;2 2z
���1=2

n;�n


 �
:

Identifying with (B15d) and (8), one concludes that

indeed Hða;bÞn;j ðzÞ �!
j!1

HnðzÞ:
Looking now for computable representations, the func-

tion Hða;bÞn;j ðzÞ is divided in two cases, depending on the na-

ture of parameter k: integer or noninteger. The second case

is handled first. If k� 2� n is noninteger, then formula

(B14) is valid and one obtains

H a;bð Þ
n;j zð Þ ¼ p�1=2j

C k� 1ð Þ
C nþ 2� kð ÞC k� 3=2ð Þ

C k� 1þ nð Þ

"

� 2jzð Þk�2
1F2

k� 3=2

k� 1� n; k� 1þ n
; 2jz

 !

þC k� n� 2ð ÞC nþ 1=2ð Þ
C 2nþ 1ð Þ 2jzð Þn

� 1F2

nþ 1=2

nþ 3� k; 2nþ 1
; 2jz

 !#
; (23)

where the 1F2
a

b; c
; z

� �
function is defined in (B3).

Two important observations about (23) can be made.

First, one can clearly observe that if k is integer, either term

will always contain a singularity. Fortunately, they cancel

out and the result can be written in terms of known functions.

This case will be treated below. The other observation is that

when k is not integer, if one writes (23) explicitly as a power

series, as shown in Eq. (A4), each term in the expansion will

be proportional to a noninteger power of z.

The second case occurs when k is integer, i.e., k¼ 2þ k
(k¼ 1, 2,…). In order to show that now the jPGF is also rep-

resented by known functions, the limit k¼ 2 will be tempo-

rarily considered in (22), in which case formula (B15e)

shows that

H a;bð Þ
n;j zð Þ ¼k¼2ð Þ jffiffiffi

p
p G2;1

1;3 2jz
��� 1=2

0; n;�n

" #

¼ 2jKn

ffiffiffiffiffiffiffi
2jz
p� �

In

ffiffiffiffiffiffiffi
2jz
p� �

;

where Kn(z) is the second modified Bessel function.46 This

result shows clearly that in this case the function has a loga-

rithmic singularity since, for z	 0,46

Kn zð Þ ’ 1

2
C nð Þ z

2

� ��n

þ �ð Þn ln
z

2

� �
In zð Þ:

Now, in order to obtain the expression for physical val-

ues of k¼ 3, 4,…, one must take into account the formula

(B13), the Leibniz differentiation formula,57 and the

identities58

@n

@zn
z6�=2I� a

ffiffi
z
p� �h i

¼ a

2

� �n

z 6��nð Þ=2I�7n a
ffiffi
z
p� �

@n

@zn
z6�=2K� a

ffiffi
z
p� �h i

¼ � a

2

� �n

z 6��nð Þ=2K�7n a
ffiffi
z
p� �

:

After some simple algebra, one obtains

H a;bð Þ
n;j zð Þ ¼ 2j

C k� 1ð Þ
jz

2

� �k=2�1Xk�2

s¼0

�ð Þs
k� 2

s

 !

� Kn� k�2ð Þþs

ffiffiffiffiffiffiffi
2jz
p� �

Inþs

ffiffiffiffiffiffiffi
2jz
p� �

; (24)

which is valid for k¼ 2þ k (k¼ 1,2,…).

With identities (23) and (24), all possible values for the

parameters and the argument are covered and adequate

approximations for Hða;bÞn;j ðzÞ can be obtained. As an exam-

ple, in Ref. 34 dispersion relations for dispersive Alfv�en

waves propagating in a kappa plasma were derived from

suitable approximations to the jPGF. From the computa-

tional point of view, representations (23) and (24) also come

in handy. The Meijer G-function is supported by some com-

puter algebra software and also by the mpmath library.59

However, for computationally intensive applications, codes

written in Fortran or C/Cþþ are better suited.

In order to evaluate the function Hða;bÞn;j ðzÞ, a special

code written in Modern Fortran60 was developed. A

complete description of the code structure will not be given

here. Suffice it to say, that for the case k integer, given in

(24), library routines that evaluate the modified Bessel
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functions were employed, whereas for noninteger k, although

the series (23) formally converges for any 0< z<1, round-

ing errors corrupt the accuracy of the result for 2jz � 10 and

other strategies are needed. The code that was written evalu-

ates Hða;bÞn;j ðzÞ in roughly the same time-frame taken by any

library routine that evaluates a transcendental function, with

an accuracy of the order of the machine precision.

Figure 1 shows some plots of the function Hð0;0Þn;j ðzÞ,
evaluated with the code that was developed. The Maxwellian

form HnðzÞ is clearly reached for j 
 1 and the departure

from the Maxwellian increases as j diminishes, as expected.

The plots also show that the greatest relative departure

occurs for small z (z � 1), implying that the effect of the

jVDF is more pronounced on small-gyroradius particles.

A situation where rounding errors could be important in

the developed code might occur when k is in the vicinity of

an integer, when the code still evaluates formula (23), but

near the poles of the gamma functions. However, for the

test cases considered, the code demonstrated a robust per-

formance, as illustrated in Fig. 2, which shows plots of

Hð0;0Þn;j ð1=2Þ varying j, for some values of n. The graph shows

that the code provides smooth results for all 5/2�j� 50.

Derivative and recurrence relations: As the last mathe-

matical properties for the jPGF, their recurrence relations

will be deducted now.

Starting from the representation (22), if one writes down

the explicit Mellin-Barnes integral from (B10) and evaluates

the derivative of the argument, one obtains

d

dy
G2;1

1;3 y
��� 1=2

k� 2; n;�n

" #

¼ y�1

2pi

ð
L

C k� 2� sð ÞC n� sð ÞC 1=2þ sð Þ
C nþ 1þ sð Þ sysds:

Since Cðn� sÞ ¼ ðn� sÞ�1Cðnþ 1� sÞ, adding and

subtracting n in the integrand above and then changing the

integration variable as s! sþ 1, there results

d

dy
G2;1

1;3 y
��� 1=2

k� 2; n;�n

" #

¼ ny�1G2;1
1;3 y

��� 1=2

k� 2; n;�n

" #

� 1

2pi

ð
L

C k� 3� sð ÞC n� sð ÞC 3=2þ sð Þ
C nþ 2þ sð Þ ysds:

Finally, writing 1 ¼ ðnþ 1þ sÞ � ðn� sÞ, reorganizing

the terms, and identifying the result back to (22), one obtains

H a;bð Þ0
n;j zð Þ ¼

n

z
H a;bð Þ

n;j zð Þ �
j

k� 2
H a;b�1ð Þ

n;j zð Þ � H a;b�1ð Þ
nþ1;j zð Þ

h i
;

(25a)

which has the constraint k> 3 imposed.

Going back now to the first expression for the deriva-

tive, employing the same identity for the gamma function,

but now cancelling the denominator, one obtains in a similar

way

H a;bð Þ0
n;j zð Þ ¼�

n

z
H a;bð Þ

n;j zð Þ�
j

k� 2
H a;b�1ð Þ

n;j zð Þ�H a;b�1ð Þ
n�1;j zð Þ

h i
;

(25b)

which has the same condition k> 3.

Finally, by adding and subtracting (25a) and (25b), one

obtains the additional relations

H a;bð Þ0
n;j zð Þ ¼ � j

k� 2
H a;b�1ð Þ

n;j zð Þ

þ 1

2

j
k� 2

H a;b�1ð Þ
n�1;j zð Þ þ H a;b�1ð Þ

nþ1;j zð Þ
h i

; (25c)

and

FIG. 1. Plots of function Hð0;0Þn;j ðzÞ for n¼ 0 (full lines) and n¼ 1 (dashed

lines) and several values of the j parameter. The limiting form HnðzÞ for j
!1 is also included.

FIG. 2. Plots ofHð0;0Þn;j ð1=2Þ as a function of j for n¼ 0, 1, 2. The limit value

Hnð1=2Þ is also shown.
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2
n

z
H a;bð Þ

n;j zð Þ ¼ j
k� 2

H a;b�1ð Þ
n�1;j zð Þ � H a;b�1ð Þ

nþ1;j zð Þ
h i

: (25d)

In the Maxwellian limit, the recurrence relations (25a)–(25d)

will reduce to the corresponding expressions for HnðzÞ and

H0
nðzÞ that can be obtained from the recurrence relations of

the modified Bessel function.46

Further properties of the function Hða;bÞn;j ðzÞ are given in

Appendix A.

C. The two-variable kappa plasma functions

After discussing at length about the functions Z
ða;bÞ
j ðnÞ

and Hða;bÞn;j ðzÞ, one is finally ready to return to the two-

variable functions Zða;bÞn;j ðl; nÞ and Yða;bÞn;j ðl; nÞ that appear in

the Stix parameters (6a)–(6d) for a kappa plasma.

In order to define these functions, one has to first go

back to Eq. (3), introduce the jVDF (1) into the integrals,

evaluate the derivatives, identify the rotated components via

Eq. (5), and then finally identify the Stix parameters in (6).

By an adequate change of integration variables and some

algebra, one can verify that the functions in question can be

defined as

Z a;bð Þ
n;j l;nð Þ ¼ 2

ð1
0

dx
xJ2

n �xð Þ
1þ x2=jð Þk�1

Z a;bð Þ
j

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2=j

p
 !

;

(26a)

Y a;bð Þ
n;j l; nð Þ ¼ 2

l

ð1
0

dx
x3Jn�1 �xð ÞJnþ1 �xð Þ

1þ x2=jð Þk�1

� Z a;bð Þ
j

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2=j

p
 !

; (26b)

where �2¼ 2l.

Applying the limit j!1, one obtains the expressions

Z a;bð Þ
n;j l; nð Þ ! 2Z a;bð Þ

j nð Þ
ð1

0

dx xe�x2

J2
n �xð Þ

Y a;bð Þ
n;j l; nð Þ ! 2

l
Z a;bð Þ

j nð Þ
ð1

0

dx x3e�x2

Jn�1 �xð ÞJnþ1 �xð Þ;

that can be found in any table of integrals. The final result

will be Eqs. (7).

As it was already mentioned, functions similar to

Zða;bÞn;j ðl; nÞ and Yða;bÞn;j ðl; nÞ, also defined in terms of a

remaining integral, were already considered in Ref. 36 and

have recently been numerically implemented in Ref. 39.

However, the advantages of having exact, analytically

closed-form expressions for these functions are plenty. First

of all, they simplify the derivation of adequate approxima-

tions for dispersion relations, damping or growth-rate coeffi-

cients, among other quantities related to wave propagation.

Moreover, analytical and computable representations are usu-

ally advantageous for numerical applications, both in terms

of computing time and accuracy. As an example, the avail-

ability of analytical expressions for the kappa gyroradius

function allowed the authors of Ref. 34 to obtain physically

correct expressions for the dispersion relations of dispersive

Alfv�en waves.

As it will be shown presently, the two-variable functions

defined above have contributions from both one-variable

functions Z
ða;bÞ
j ðnÞ and Hða;bÞn;j ðzÞ. It was shown here that the

former can always be written in terms of the Gauss function;

hence, it is hypergeometric (i.e., given by a power series) in

nature. However, the second one is not in general of the

same nature. Therefore, the functions Zða;bÞn;j ðl; nÞ and

Yða;bÞn;j ðl; nÞ are not representable in general by any two-

variable hypergeometric function such as the Appell or Horn

series.61

The analytical, closed-form representations sought for

functions Zða;bÞn;j ðl; nÞ and Yða;bÞn;j ðl; nÞ can be derived in the

following manner. Considering first the function Zða;bÞn;j in

(26a), if the quantity n is a point inside the domain of the

principal branch of Z
ða;bÞ
j ðfÞ, then, as the integration is car-

ried out, the argument fðxÞ ¼ n=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2=j

p
follows a curve

in the complex plane attaching the point f(0)¼ n with the or-

igin. Since it is always possible to find a region R where the

function Z
ða;bÞ
j ðfÞ is analytic and that contains the whole inte-

gration path, Taylor’s theorem assures that it is possible to

expand the function in a power series around any interior

point of R. Therefore, for any 0� x<1, the function

Z
ða;bÞ
j ðfðxÞÞ can be expanded in a power series around f¼ n,

as

Z a;bð Þ
j

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2=j

p
 !

¼
X1
k¼0

Xk

‘¼0

�ð Þ‘
k

‘

 !
�nð Þk

k!

� Z a;bð Þ kð Þ
j nð Þ 1þ x2

j

� ��‘=2

: (27)

Inserting (27) into (26a), one can immediately identify the

Hða;bÞn;j function from the definition (20) and obtain

Z a;bð Þ
n;j l; nð Þ ¼

X1
k¼0

Xk

‘¼0

�ð Þ‘
k

‘

 !
�nð Þk

k!

� Z a;bð Þ kð Þ
j nð ÞH a;bþ‘=2ð Þ

n;j lð Þ: (28a)

Following the same procedure for Yða;bÞn;j ðl; nÞ in (26b), one

obtains

Y a;bð Þ
n;j l; nð Þ ¼

X1
k¼0

Xk

‘¼0

k

‘

 !
�ð Þ‘j

kþ ‘=2� 2

�nð Þk

k!

� Z a;bð Þ kð Þ
j nð ÞH a;bþ‘=2�1ð Þ0

n;j lð Þ; (28b)

where the identity (A5) was also employed.

Although expressions (28a) and (28b) look formidable,

they allow a significant speed-up for numerical evaluations

of functions Zða;bÞn;j ðl; nÞ and Yða;bÞn;j ðl; nÞ. A short test was

performed, comparing the evaluation of Zða;bÞn;j ðl; nÞ both via

numerical quadrature applied to formula (26a) and by trun-

cating the k-series in (28a) to a value kmax� 0.

Call ZsumðlÞ the result obtained by truncating the series

(28a) up to k¼ kmax and ZintðlÞ the result of (26a), evaluated

via an adaptive quadrature routine, with requested relative

accuracy of �¼ 10� 5. This will be considered the “correct”
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value, against which the truncated series result can be com-

pared. Figure 3 shows plots of the relative difference

D ¼ j1�Zsum=Zintj, both for the real and imaginary parts of

the functions. The results were obtained by keeping fixed

n¼ 0, a¼ b¼ 0, j¼ 2.5 and n¼ 1þ i, and varying l.

Figure 4 shows the same results, but now for the har-

monic number n¼ 1. The results show that indeed the relative

difference decreases with kmax. Interestingly, the approxima-

tion with kmax¼ 0 was indeed better than with kmax¼ 1 in

both figures, but from kmax¼ 2 the quantity D steadily

decreases, for both the real and imaginary parts, by roughly

one order of magnitude for each successive value of kmax.

In both figures, for kmax¼ 4 one gets roughly Dr ’ 10�3

and Di ’ 10�4. If one were to plot both ZintðlÞ and ZsumðlÞ
for kmax¼ 4 in the same slide, the graph of the latter would

be almost indistinguishable from the former; however, call-

ing Tsum and Tint the average computing time per point for

Zsum and Zint, respectively, for n¼ 1 and kmax¼ 4 in Fig. 4,

the ratio of time per point resulted Tsum /Tint ’ 10�2. In

(28a), the total number of Z
ða;bÞðkÞ
j ðnÞ evaluations is kmaxþ 1,

whereas the total number of Hða;bþ‘=2Þ
n;j ðlÞ evaluations is

1
2

kmax þ 1ð Þ kmax þ 2ð Þ (15, for kmax¼ 4). Nevertheless, the

evaluation of ZsumðlÞ was in average almost 100 times faster

than the evaluation ZintðlÞ. The speed-up can be further

increased if one employs the recurrence relations for

Z
ða;bÞðkÞ
j ðnÞ and Hða;bþ‘=2Þ

n;j ðlÞ, derived in Secs. III A and III B,

which were not used in the tests. However, in this case, a

stability analysis of the recurrence relations must be first

carried out.

Therefore, although Eqs. (26a) and (26b) are simpler to

implement, for computer-intensive applications, one should

employ the closed-forms shown in (28a) and (28b). As was

also argued, these last representations also allow for the cor-

rect derivation of approximations, valid for some particular

range of particle species, frequencies, propagation angles,

and wave polarization.

IV. NUMERICAL APPLICATIONS

As a simple application of the formalism developed in

Secs. II and III, the dispersion equation (9) was solved for

some particular cases.

Since the intention was to solely provide a simple

demonstration of the formalism, it was assumed an electron-

proton plasma, both formally described by the same distribu-

tion function (1), and both in the ST91 form. However, the

dispersion equation was solved only for high-frequency

waves propagating at arbitrary angles with B0. Hence, the

protons only serve to provide a stationary background by

taking mp ! 1 (mp: proton mass). The Stix parameters in

Eqs. (6) were evaluated with a¼ e only and by truncating

the harmonic number series to �nmax� n� nmax. In all solu-

tions presented below, nmax¼ 1.

The kappa plasma functions Zða;bÞn;j ðl; nÞ and Yða;bÞn;j ðl; nÞ
and their derivatives in Eqs. (6a)–(6d) were evaluated in

(28a) and (28b) on the lowest possible order, i.e., kmax¼ 0.

In this case, the exact expressions (28a) and (28b) are

replaced by the approximations

~Z 1;bð Þ
n;j l; nð Þ ¼ H 1;bð Þ

n;j lð ÞZ 1;bð Þ
j nð Þ

~Y 1;bð Þ
n;j l; nð Þ ¼ j

k� 2
H 1;b�1ð Þ0

n;j lð ÞZ 1;bð Þ
j nð Þ;

in which case their formal structure is the same as the

Maxwellian limits (7). One must point out here that although

~Zð1;bÞn;j ðl; nÞ and ~Yð1;bÞn;j ðl; nÞ are approximations when the

distribution function is the isotropic jVDF given in (1), or

when one employs a bi-kappa model, if one employs instead

another anisotropic distribution model, such as the product-

bi-kappa or kappa-Maxwellian VDFs, which describe statis-

tical distributions of particles with uncorrelated velocity

directions, the same structure will correspond to the exact

expressions for the functions Zða;bÞn;j ðl; nÞ and Yða;bÞn;j ðl; nÞ,
since the expansion (27) will not be needed in these cases.

FIG. 3. Plots of the real (solid lines) and imaginary (dashed) parts of the rel-

ative difference D between functions Zsum and Zint for n¼ 0, a¼b¼ 0,

j¼ 2.5, n¼ 1þ i and different values of kmax.

FIG. 4. Same as Fig. 3, but for n¼ 1.
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Figure 5 shows the numerical solutions of the dispersion

equation (9), i.e., the dispersion relations, for high-frequency

waves propagating at three oblique propagation angles, rela-

tive to B0: h¼ 10�, 45�, and 80�. For each angle, the disper-

sion equation is solved for different values of the j
parameter, including the Maxwellian limit. The other physi-

cal parameters adopted in Fig. 5 are: x2
pe=X

2
e ¼ 0:5, corre-

sponding to a low-density plasma, and v2
Te=c2 ¼ 10�4. Both

these quantities determine the electron beta parameter

be ¼
x2

pe

X2
e

v2
Te

c2
¼ neTe

B2
0=8p

¼ 5� 10�5;

which measures the ratio of the thermal to magnetic field

energy densities. Hence, the dispersion relations in Fig. 5 are

typical to a low-beta plasma.

Since for oblique propagation the polarizations of the

eigenmodes are elliptic, in this work, we adopted a simplistic

nomenclature that combines the names for both exactly par-

allel or perpendicular directions. In the slide for h¼ 10�, for

instance, the blue curves are labelled “RX” because in the

parallel direction case (h¼ 0�), these would be the modes

with right-hand circular polarization (R). On the other hand,

at the perpendicular direction (h¼ 90�), they would corre-

spond to the fast extraordinary mode (X). Hence, this elliptic

mode is termed the RX, or “right-fast extraordinary” mode.

The “PO” mode is the “plasma-ordinary” mode, since for

h¼ 0� this mode would be the longitudinal (plasma, P)

mode, whereas for h¼ 90� it would be the ordinary (O)

mode. The mode “LZ” or “left-slow extraordinary” would be

the left-hand circularly polarized mode (L) for parallel or the

slow extraordinary (Z) for perpendicular directions. Finally,

the “W” or “whistler” mode is the lower-frequency branch of

the R mode for h¼ 0�, which disappears as h ! 90�, since

only the electron inertia is included in the dispersion

equation.

In each panel of Fig. 5, the cut-off frequencies xRX and

xLZ corresponding to the R and L modes cut-offs for a

Maxwellian plasma,45 which are independent of the propaga-

tion angle h, are also identified.

Since in a low-beta plasma the thermal effects are less

important, the effect of the long tail of the jVDF is not very

pronounced. Notwithstanding, the dispersion relations

noticeably depart from the Maxwellian case as j decreases,

with the j¼ 20 case practically identical to the Maxwellian

limit. One also notices that the departure is roughly constant

in wavenumber for almost all modes, although the W mode

is the least affected by the shape of the VDF.

A quite different scenario appears for a high-density,

high-temperature and high-beta plasma. Figures 6–8 show

the solutions of (9) for x2
pe=X

2
e ¼ 50; v2

Te=c2 ¼ 10�2 and,

FIG. 5. Plots of high-frequency dispersion relations in a low-beta, kappa

plasma, as the numerical solutions of the dispersion equation (9), for propa-

gation angles h¼ 10�, 45�, and 80�. For each angle, the dispersion equation

is solved for several values of the j parameter, including the limit j ! 1
(Maxwell). The modes with elliptic polarization are named: RX (right-fast

extraordinary), PO (plasma-ordinary), LZ (left-slow extraordinary), and W
(whistler).

FIG. 6. Plots of high-frequency dispersion relations in a high-beta, kappa

plasma, as the numerical solutions of the dispersion equation (9), for propa-

gation angle h¼ 10�. The dispersion equation is solved for several values of

the j parameter, including the limit j ! 1 (Maxwell). The modes with

elliptic polarization are named: RX (right-fast extraordinary), PO (plasma-

ordinary), and LZ (left-slow extraordinary).
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consequently, be¼ 0.5. In this case, the effect of the super-

thermal particles on wave dispersion is considerably more

important than it is in a low-beta plasma. Now the W mode

is not shown because it occupies a region well below the dis-

played range of frequencies. In all propagation angles, for a

sufficiently small j the dispersion relation for a given mode

and at the same wavenumber can assume a range of frequen-

cies previously taken by another mode for a larger j.

Therefore, it is expected that the effect of the superthermal

tails on the VDFs will be significant for moderate to high-

beta plasmas in all propagation angles.

Further studies of oblique waves propagating in super-

thermal plasmas will be conducted in future papers, includ-

ing the effects of anisotropies in temperature.

V. CONCLUSIONS

In this work, a general treatment for the problem of

wave propagation in a magnetized superthermal plasma was

proposed. The formulation is valid for any number of parti-

cle species, wave frequency, and propagation angle.

The dielectric tensor components are written in terms of

thermal Stix parameters, which in turn are written in terms

of special functions that appear when the velocity distribu-

tion functions are isotropic kappa distributions. The mathe-

matical properties of the special functions are discussed in

detail and several useful identities and formulae are derived.

As a demonstration of the usefulness of the formulation

proposed here, the dispersion relations for high-frequency

waves propagating at several angles relative to the ambient

magnetic field are obtained as the numerical solutions of the

dispersion equation for a kappa plasma.

It is expected that this formulation will be very useful

for the study of wave propagation and amplification/damping

in superthermal plasmas such as the solar wind or planetary

magnetospheres.
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APPENDIX A: ADDITIONAL PROPERTIES OF THE
KAPPA PLASMA FUNCTIONS

1. Properties of Z
ða;bÞ
j ðnÞ

Other representations: Employing formula (B6) and the

function (B9), result (13) can be analytically continued

across the line ni¼ 0, resulting in the representation

Z
a;bð Þ

j nð Þ ¼ Z
a;bð Þ

j;NC nð Þ þ c
2i

ffiffiffi
p
p

C k� 1ð Þ
jbþ1=2C r� 3=2ð Þ 1þ n2

j

� �� k�1ð Þ

;

(A1)

where Z
ða;bÞ
j;NCðnÞ is the non-continued representation (13), and

c ¼
0; 0 < argn � p

1; p < argn6 2p ðor� p < argn6 0Þ:

(

Notice that with (A1), the branch cut moved to the line

�
ffiffiffi
j
p
� ni > �1, as is the case of all other computable rep-

resentations of Z
ða;bÞ
j ðnÞ.

It is easy to show that Z
ða;bÞ
j ðnÞ always reduces to a poly-

nomial when k is integer. First, starting from (15) and insert-

ing into (B7a), there results

Z a;bð Þ
j nð Þ ¼ i

ffiffiffi
p
p

C k� 1ð Þ
jbþ1=2C r� 3=2ð Þ �

2C k� 1=2ð Þn
jbþ1C r� 3=2ð Þ

"

�2F1

2� k; 1=2

3=2
;� n2

j

 !#
1þ n2

j

� �� k�1ð Þ

:

FIG. 7. Same as Fig. 6, but with propagation angle h¼ 45�.

FIG. 8. Same as Figs. 6 and 7, but with propagation angle h¼ 80�.
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According to (B7g), if k¼ 2þm (m¼ 0, 1, 2, …), the

Gauss function reduces to a polynomial of degree k� 2. This

result is also interesting because its Maxwellian limit is

another well-known representation of the Fried and Conte

function,48 ZðnÞ ¼ i
ffiffiffi
p
p

e�n2

erfcð�inÞ, where erfc(z) is the

complementary error function.62

Series representations: Several expansions were

obtained for the jPDF.

Power series: Inserting definition (B4) into the form

(15), one readily obtains

Z a;bð Þ
j nð Þ ¼ � p1=2j�b�1

C r� 3=2ð Þ n
X1
k¼0

C kþ k � 1=2ð Þ
C k þ 3=2ð Þ � n2

j

� �k

þi
p1=2C k� 1ð Þ

jbþ1=2C r� 3=2ð Þ 1þ n2

j

� �� k�1ð Þ

; (A2)

which converges within the radius jn2j < j. The Maxwellian

limit of (A2) reduces, via convolution, to the well-known se-

ries for Z(n).48

Asymptotic series: Inserting definition (B4) into the

form (16), one readily obtains

Z a;bð Þ
j nð Þ ¼� C k� 3=2ð Þ

jbC r� 3=2ð Þ
1

n

X1
k¼0

1=2ð Þk
5=2� kð Þk

� j

n2

� �k

þ p1=2C k� 1ð Þ
jbþ1=2C r� 3=2ð Þ i� tan kpð Þ½ � 1þ n2

j

� �� k�1ð Þ

:

When k ¼ 3=2þ m (m¼ 1, 2, …), the result above is

not valid, since singularities appear in both terms. In this

case, one must return to (15) and employ the special case

(B7f), in which case there results

Z a;bð Þ
j nð Þ¼� p�1=2j�b

C jþa�3=2ð Þ
1

n

Xm�1

k¼0

C kþ1

2

� �(

� m� k�1ð Þ! j

n2

� �k

þ j

n2

� �mX1
k¼0

C kþmþ1=2ð Þ
k!

� ln
n2

j

� �
þ tm;k


 �
� j

n2

� �k
)

þip1=2 C mþ1=2ð Þ
jbþ1=2C jþa�3=2ð Þ 1þn2

j

� �� mþ1=2ð Þ

;

where

tm;k ¼ w k þ 1ð Þ � w k þ mþ 1

2

� �
:

This result shows that there is a logarithmic singularity for

the case k¼mþ 3/2 when jn2=jj ! 1.

Derivatives: Starting from (19) and applying in

sequence transformations (B7e), (B7a), and (B7b), one

obtains

Z
a;bð Þ nð Þ

j nð Þ
�in

ffiffiffi
p
p

n!
¼j� bþ1=2þn=2ð Þ

C r�3=2ð Þ

C k�1

2
þn

2

� �

C
1

2
þn

2

� � 2nffiffiffi
j
p

2
6664

�2F1
k�1

2
þn

2
;1þn

2
3=2

;�n2

j

0
@

1
A� i

C k�1þn

2

� �

C 1þn

2

� �

�2F1
k�1þn

2
;
1

2
þn

2
1=2

;�n2

j

0
@

1
A
3
5; (A3)

which immediately renders the power series expansion for

Z
ða;bÞðnÞ
j ðnÞ.

Taking the limit x ! 1 in (27), and using the value

(12), the resulting expression,

X1
k¼0

�nð Þk

k!
Z a;bð Þ kð Þ

j nð Þ ¼ i

ffiffiffi
p
p

C k� 1ð Þ
jbþ1=2C r� 3=2ð Þ ;

is a sum rule for the derivatives of the jPDF. Once again,

the Maxwellian limit returns a known result56

X1
k¼0

�nð Þk

k!
Z kð Þ nð Þ ¼ i

ffiffiffi
p
p

:

2. Properties ofHða;bÞn;j ðzÞ

An explicit power series expansion when k is not integer

can be written from (23) and (B3) as

H a;bð Þ
n;j zð Þ ¼

j 2jzð Þnffiffiffi
p
p

C k� 1ð Þ
X1
k¼0

H kð Þ
n;k zð Þ

2jzð Þk

k!
; (A4)

where

H kð Þ
n;k zð Þ ¼ C k� n� 2ð ÞC nþ 1=2þ kð Þ

C 2nþ 1þ kð Þ nþ 3� kð Þk

þ C nþ 2� kð ÞC k� 3=2þ kð Þ
C k� 1þ nþ kð Þ k� 1� nð Þk

2jzð Þk�n�2
:

Notice that each term in this series is proportional to a

noninteger power of z.

Another identity related to the derivative of Hða;bÞn;j ðzÞ
will be obtained now, regarding the integral in the definition

(26b). Starting from (B15b) and employing formula (B13),

one obtainsð1
0

dx
x3Jn�1 �xð ÞJnþ1 �xð Þ

1þ x2=jð Þk�1

¼ lffiffiffi
p
p d

dl

ð1
0

dx

x3G1;1
1;3 2lx2

��� 1=2

n;�n;�1

" #

1þ x2=jð Þk�1
;

recalling that �2¼ 2l. Then, using formula (B12) and identi-

fying the result with the definition (20), one concludes that
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ð1
0

dx
x3Jn�1 �xð ÞJnþ1 �xð Þ

1þ x2=jð Þk�1
¼ 1

2

jl
k� 2

H a;b�1ð Þ0
n;j lð Þ: (A5)

APPENDIX B: HYPERGEOMETRIC FUNCTIONS
EMPLOYED IN KAPPA PLASMAS

There are two classes of special functions that are

employed in this and other theoretical works concerning

superthermal plasmas, namely, the generalized hypergeomet-

ric series and the Meijer G functions. Some of their proper-

ties will be presented here.

1. The generalized hypergeometric series

The general expression for the hypergeometric series is

pFq
a1;…; ap

b1;…; bq
; z

� �
¼
X1
k¼0

a1ð Þk � � � apð Þk
b1ð Þk � � � bqð Þk

zk

k!
; (B1)

where p, q are natural numbers, the sets {ap}, {bq} and the

argument z are in general complex, and (a)n¼C(aþ n)/C(a)

is the Pochhammer symbol. Unless explicitly stated, all

properties presented here can be found in Ref. 63.

Except when any of the inferior parameters b1,…, bq is a

nonpositive integer, the hypergeometric series pFqð� � � ; zÞ
belongs to the class C

pþqþ1 within its convergence radius,

which divides it in three classes: (i) p� q, (ii) p¼ qþ 1, and

(iii) p� qþ 2. In this work, we employ functions of the first

two classes. Series of class 3 are not convergent except at the

origin. The Meijer G-function, discussed in Appendix B 2,

lends an analytical representation for these functions.

a. Class 1 series: The Kummer and 1F2

hypergeometric functions

The Kummer confluent hypergeometric function: The
Kummer function is defined from (B1) as

1F1
a
b

; z

� �
¼
X1
k¼0

að Þk
bð Þk

zk

k!
: (B2)

The 1F2
a

b; c
; z

� �
hypergeometric function: From (B1),

1F2
a

b; c
; z

� �
¼
X1
k¼0

að Þk
bð Þk cð Þk

zk

k!
: (B3)

Notice that both these series, for 1F1 and 1F2, converge for

any jzj <1. Thus, the 1F2ð� � � ; zÞ function belongs to the

class C
4, is meromorphic on the b, c planes except at the

nonpositive integer points and entire on the a, z planes.

b. Class 2 series: The Gauss function

The Gauss hypergeometric series is defined from (B1)

as63,64

2F1
a; b
c

; z

� �
¼
X1
k¼0

að Þk bð Þk
cð Þk

zk

k!
: (B4)

This series, and all other functions belonging to the same

class, is convergent within the unit circle jzj < 1 and condi-

tionally convergent along it. Some properties of the Gauss

function are presented below.

Convergence at jzj ¼ 1 and analyticity: Over the unit

circle, the series (B4) converges: (i) absolutely if <ðc� a
�bÞ > 0, (ii) conditionally if �1 < <ðc� a� bÞ6 0, and

(iii) diverges if <ðc� a� bÞ � �1. For jzj > 1 the function

must be analytically continued.

The Gauss function has a branch point at z¼ 1, with the

branch line running over 1� z<1. The principal branch is

defined as the region 0 < argðz� 1Þ6 2p.

When a¼�m (m¼ 0, 1, 2, …) and c 6¼ 0, �1, �2,…,

the function 2F1ð
�m; b

c
; zÞ reduces to a polynomial of

degree m. Obviously, 2F1ð
a; b
c

; zÞ¼2F1ð
b; a
c

; zÞ.

Integral representation: The Gauss function can be

expressed, when <c > <b > 0, by the integral

2F1
a;b
c

;z

� �
¼ C cð Þ

C bð ÞC c�bð Þ

ð1

0

tb�1 1� tð Þc�b�1
1� tzð Þ�a

dt:

(B5)

Analytic continuation: Writing z¼ xþ iy, the difference

of the values of 2F1 across the branch line x> 1 is

2F1

a; b

c
; xþ i0

 !
�2F1

a; b

c
; x� i0

 !

¼ 2piC cð Þ x� 1ð Þc�a�b

C að ÞC bð ÞC c� a� bþ 1ð Þ

�2F1

c� a; c� b

c� a� bþ 1
; 1� x

 !
: (B6)

Linear and quadratic transformations: The analytical con-

tinuation of the series (B4) can also be accomplished employing

several known transformations of 2F1
a; b
c

; z

� �
, either linear

or nonlinear. Some of these transformations are given below

2F1
a;b
c

; z

� �
¼ ð1� zÞc�a�b

2F1
c� a; c� b

c
; z

� �
(B7a)

¼C cð ÞC c�a�bð Þ
C c�að ÞC c�bð Þ2F1

a;b

aþb�cþ1
;1�z

 !

þ 1�zð Þc�a�b C cð ÞC aþb�cð Þ
C að ÞC bð Þ

� 2F1

c�a;c�b

c�a�bþ1
;1�z

 !
jarg 1�zð Þj<p
� �

(B7b)

¼ C cð ÞC b� að Þ
C bð ÞC c� að Þ

�zð Þ�a
2F1

a; 1� cþ a

1� bþ a
;
1

z

 !

þC cð ÞC a� bð Þ
C að ÞC c� bð Þ �zð Þ�b

2F1

b; 1� cþ b

1� aþ b
;
1

z

 !

jarg �zð Þj < p
� �

(B7c)
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2F1

a; b

aþ b� 1=2
; z

 !

¼ � 1� zð Þ�1=2
2F1

2a� 1; 2b� 1

aþ b� 1=2
;
1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffi
1� z
p

 !

(B7d)

2F1

a; b
1

2
aþ 1

2
bþ 1

2

; z

0
@

1
A¼2F1

1

2
a;

1

2
b

1

2
aþ 1

2
bþ 1

2

; 4z� 4z2

0
BB@

1
CCA:

(B7e)

Some special cases of the transformations above are

also relevant for this work. If b� a¼m (m¼ 0, 1, 2,…),

then

2F1

a; aþ m

c
; z

 !

¼ C cð Þ
C aþ mð Þ �zð Þ�a

Xm�1

k¼0

að Þk m� k � 1ð Þ!
k!C c� a� kð Þ z�k

þC cð Þ
C að Þ

�zð Þ�a
X1
k¼0

�ð Þk aþ mð Þkz�k�m

k! k þ mð Þ!C c� a� k � mð Þ

� ln �zð Þ þ w k þ 1ð Þ þ w k þ mþ 1ð Þ
�
� w aþ k þ mð Þ � w c� a� k � mð Þ�;

jzj > 1

jarg �zð Þj < p

 !
; (B7f)

where w(z) is the digamma function.44

On the other hand, if a¼�m (m¼ 0, 1, 2, …) and

neither b nor c are nonpositive integers, the Gauss function

reduces to the polynomial

F
�m; b

c
; z

� �
¼
Xm

n¼0

�mð Þn bð Þn
cð Þn

zn

n!
¼
Xm

n¼0

m
n

� �
bð Þn
cð Þn
�zð Þn:

(B7g)

Derivatives: The general formula for the n-th derivative

of the Gauss function is

dn

dzn 2F1
a; b
c

; z

� �
¼ að Þn bð Þn

cð Þn
2F1

aþ n; bþ n
cþ n

; z

� �
: (B8)

Other functions in the same class: We have also

employed the function

1F0
a
� ; z

� �

 2F1

a; c
c

; z

� �
¼ ð1� zÞ�a: (B9)

2. The Meijer G-function

The Meijer G-function is that function whose Mellin

transform65 can be expressed as a ratio of certain products of

gamma functions. Consequently, its definition is given by

the Mellin-Barnes contour integral

Gm;n
p;q z

��� apð Þ
bqð Þ

" #
¼ 1

2pi

ð
L

U
apð Þ
bqð Þ

; s

 !
zsds; (B10)

where

U
apð Þ
bqð Þ

; s

� �
¼

Ym
j¼1

C bj � sð Þ
Yn

j¼1

C 1� aj þ sð Þ

Yq

j¼mþ1

C 1� bj þ sð Þ
Yp

j¼nþ1

C aj � sð Þ
:

In (B10), p, q¼ 0, 1, 2,…, 0�m� q and 0� n� p. If

mþ 1> q or nþ 1> p, the product is replaced by one. The

notation is such that ðapÞ¼: a1; a2;…; ap and ðbqÞ¼: b1;
b2;…; bq. It is assumed that the aj’s and bj’s are such that no

pole of Cðbj � sÞ ðj ¼ 1;…;mÞ coincides with any pole of

Cð1� ak þ sÞ ðk ¼ 1;…; nÞ, i.e., ak� bj 6¼ 1, 2,…. It is also

assumed that z 6¼ 0, since the origin is a branch point.

The integration contour L in (B10) corresponds to that

of the inverse Mellin transform, but deformed in such a way

that the poles of C(bj� s) (j¼ 1,…, m) lie to the right of the

contour, whereas the poles of C(1� ajþ s) (j¼ 1,…, n) lie to

the left of the same path. A detailed account on all possible

integration paths can be found in Refs. 63, 66, and 67. All

properties of the G-function shown here are likewise found

in these sources.

The G-function has remarkable properties. For

instance, it contains all generalized hypergeometric func-

tions, but it also represents functions that cannot be

expanded in a power series anywhere, such as functions

with logarithmic singularities. The definition (B10) forms

a class that is closed under reflections of the argument (z
!� z and z ! z � 1), multiplication by powers of z, differ-

entiation, Laplace transform, and integration. The last

property, in particular, means that the integration of one or

a product of two G-functions is a G-function. Computer

algebra software takes advantage of this property in order

to analytically evaluate integrals by representing the inte-

grand as G-function(s).

Elementary properties: The following identities can be

easily obtained from the definition (B10):

Gm;n
p;q z

��� ðapÞ

ðbqÞ

" #
¼ Gn;m

q;p z�1
��� 1� ðbqÞ

1� ðapÞ

" #

zrGm;n
p;q z

��� ðapÞ

ðbqÞ

" #
¼ Gm;n

p;q z
��� ðapÞ þ r

ðbqÞ þ r

" #
; (B11a)

Gm;n
p;q z

��� a; a2;…an; anþ1;…; ap

b1;…; bm; bmþ1;…; bq�1; a

" #

¼ Gm;n�1
p�1;q�1 z

��� a2;…; ap

b1;…; bq�1

" #
; (B11b)

where for (B11b), n, p, q� 1.

Integrals containing the G-function: Amongst the

myriad integration formulae available, this work makes

use of
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ð1
0

ya�1 yþ bð Þ�rGm;n
p;q zy

��� apð Þ
bqð Þ

" #
dy

¼ ba�r

C rð ÞG
mþ1;nþ1
pþ1;qþ1 bz

��� 1� a; apð Þ
r� a; bqð Þ

" #
: (B12)

Derivatives: The following formulas are employed:

dk

dzk
z�b1 Gm;n

p;q z
��� apð Þ

bqð Þ

" #( )

¼ �ð Þkz�b1�k Gm;n
p;q z

��� apð Þ
b1 þ k; b2;…; bq

" #
; mP1ð Þ

(B13a)

zk dk

dzk
Gm;n

p;q z
��� apð Þ

bqð Þ

" #
¼ Gm;nþ1

pþ1;qþ1 z
��� 0; apð Þ

bqð Þ; k

" #
: (B13b)

Representations of special functions: If no two of the bh

(h¼ 1,., m) parameters differ by an integer, all poles of

Uð� � � ; sÞ in (B10) are simple and then the G-function can be

expressed as a combination of the hypergeometric series

(B1) as

Gm;n
p;q z

��� apð Þ
bqð Þ

" #
¼
Xm

h¼1

Ym
j¼1

C bj � bhð Þ�
Yn

j¼1

C 1þ bh � ajð Þ

Yq

j¼mþ1

C 1þ bh � bjð Þ
Yp

j¼nþ1

C aj � bhð Þ

� zbh
pFq�1

1þ bh � apð Þ
1þ bh � bqð Þ�

; �ð Þp�m�nz

 !
;

(B14)

which is valid for p< q or p¼ q and jzj < 1. The notation

Cðbj � bhÞ� means that this term is absent when h¼ j.
If any pair of bh parameters differ by an integer, then

expression (B14) is no longer valid and the singularities in

different terms have to be cancelled out by a limiting pro-

cess. In this case, the final result will contain a logarithmic

singularity and the G-function will then represent a function

that is not simply expandable in a power series. A detailed

account of this lengthy process is given in Ref. 66. Although

this case is relevant in this work, the obtained results can

always be expressed by known functions.

A short list of function representations is given below

pFq

apð Þ
bqð Þ

; z

 !
¼

Yq

j¼1

C bjð Þ

Yp

j¼1

C ajð Þ
G1;p

p;qþ1 �z
��� 1� apð Þ
0; 1� bqð Þ

" #
;

(B15a)

Jl
ffiffi
z
p� �

J�
ffiffi
z
p� �
¼ 1ffiffiffi

p
p G1;2

2;4 z
��� 0;1=2
lþ�

2
;�lþ�

2
;
l��

2
;�l��

2

2
4

3
5;

(B15b)

J2
�

ffiffi
z
p� �
¼ 1ffiffiffi

p
p G1;1

1;3 z
��� 1=2

�;��; 0


 �
; (B15c)

e�z=2I�
z

2

� �
¼ 1ffiffiffi

p
p G1;1

1;2 z
��� 1=2

�;��


 �
; (B15d)

I�
ffiffi
z
p� �

K�

ffiffi
z
p� �
¼ 1

2
ffiffiffi
p
p G2;1

1;3 z
��� 1=2

0; �;��


 �
: (B15e)

In particular, representation (B15a) gives meaning to a

hypergeometric function pFqð� � � ; zÞ when p> qþ 1.

APPENDIX C: CARTESIAN COMPONENTS OF THE
DIELECTRIC TENSOR

The components of the dielectric tensor in Cartesian

coordinates and in terms of the Stix parameters are45

exx ¼ Ŝ e
ð xy

yx Þ
¼ 7iD̂;

e
ð xz

zx Þ
¼ N?Nkg eyy ¼ Ŝ � N2

?ŝ þ N2
?;

e
ð yz

zy Þ
¼ 6iN?Nkf ezz ¼ P̂;

where Ŝ ¼ 1
2

R̂ þ L̂Þ
�

and D̂ ¼ 1
2

R̂ � L̂Þ
�

are, respectively,

the Ŝum and D̂ifference (thermal) Stix parameters, and g ¼
1
2

l̂ þ �̂ð Þ � 1 and f ¼ 1
2
�̂ � l̂ð Þ are kinetic parameters.

Then, using the expressions (6) for the kappa Stix

parameters, one obtains

Ŝj ¼ 1þ
X

a

x2
pa

x2

X1
n!�1

n2

la

n0aZ aa;2ð Þ
n;ja

;

D̂j ¼ �
X

a

x2
pa

x2

X1
n!�1

nn0a

@Z aa;2ð Þ
n;ja

@la

;

gj ¼ �
1

2

X
a

x2
pa

xXa

w2
a

c2

X1
n!�1

n

la

n2
0a

@Z aa;1ð Þ
n;ja

@nna

;

fj ¼
1

2

X
a

x2
pa

xXa

w2
a

c2

X1
n!�1

n2
0a

@2Z aa;1ð Þ
n;ja

@nna@la
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