16 research outputs found

    Cryo-electron tomography of cells: connecting structure and function

    Get PDF
    Cryo-electron tomography (cryo-ET) allows the visualization of cellular structures under close-to-life conditions and at molecular resolution. While it is inherently a static approach, yielding structural information about supramolecular organization at a certain time point, it can nevertheless provide insights into function of the structures imaged, in particular, when supplemented by other approaches. Here, we review the use of experimental methods that supplement cryo-ET imaging of whole cells. These include genetic and pharmacological manipulations, as well as correlative light microscopy and cryo-ET. While these methods have mostly been used to detect and identify structures visualized in cryo-ET or to assist the search for a feature of interest, we expect that in the future they will play a more important role in the functional interpretation of cryo-tomograms

    Excess Propagation Loss of Semi-Closed Obstacles for Inter/Intra-Device Communications in the Millimeter-Wave Range

    No full text
    The ever decreasing geometrical dimensions of electronic devices makes miscellaneous cables or connectors of relatively large dimensions unwanted. Thus, wireless inter/intra-device communications in the millimeter-wave range become a topic of recent interest. In this paper, the excess losses of three groups of typical semi-closed obstacles (connectors, heatsinks, and printed circuit boards) in inter/intra-device communications are measured and empirically modeled. Specific coefficients for each of the obstacles are estimated to describe the excess loss in the millimeter-wave band. Validation shows that the empirical model structure combined with the specific coefficients can provide an effective and simple way to include various semi-closed obstacles in the network planning, simulation, and design of inter/intra-device communications

    Excess Propagation Loss Modeling of Semiclosed Obstacles for Intelligent Transportation System

    No full text
    Unlike solid obstacles, the excess loss of semiclosed obstacles (SCOs) can be considerably overestimated by directly applying existing diffraction models, i.e., multiedge diffraction models. By regarding the propagation situation as a superposition of the cases of the “Open Field” and the “Closed Obstacle,” this paper presents a simple way to model the excess loss of SCOs that widely exists in intelligent transportation systems. By estimating two weight coefficients according to the specific situation, this model structure can be applied to different SCOs. To illustrate our modeling concepts, two typical cut-and-cover tunnels in high-speed railway are studied in detail. Combining this case with our previous implementations for train stations and crossing bridges, a complete set of coefficients for the excess loss of the main SCOs in railway settings is presented. This case study shows that the proposed approach provides an effective and fairly simple way to include various SCOs in the network planning, simulation, and design of communication systems. As our approach has determined the coefficients empirically, the proposed model structure can provide the foundation for future work that aims to streamline the excess loss prediction via estimation of coefficients either analytically or via a reduced set of measurements

    Challenges Toward Wireless Communications for High-Speed Railway

    No full text
    High-speed railway (HSR) brings convenience to peoples\u27 lives and is generally considered as one of the most sustainable developments for ground transportation. One of the important parts of HSR construction is the signaling system, which is also called the “operation control system,” where wireless communications play a key role in the transmission of train control data. We discuss in detail the main differences in scientific research for wireless communications between the HSR operation scenarios and the conventional public land mobile scenarios. The latest research progress in wireless channel modeling in viaducts, cuttings, and tunnels scenarios are discussed. The characteristics of nonstationary channel and the line-of-sight (LOS) sparse and LOS multiple-input-multiple-output channels, which are the typical channels in HSR scenarios, are analyzed. Some novel concepts such as composite transportation and key challenging techniques such as train-to-train communication, vacuum maglev train techniques, the security for HSR, and the fifth-generation wireless communications related techniques for future HSR development for safer, more comfortable, and more secure HSR operation are also discussed

    Deciphering Morphological Determinants of the Helix-Shaped Leptospira ▿ †

    No full text
    Leptospira spp. are thin, highly motile, slow-growing spirochetes that can be distinguished from other bacteria on the basis of their unique helical shape. Defining the mechanisms by which these bacteria generate and maintain this atypical morphology should greatly enhance our understanding of the fundamental physiology of these pathogens. In this study, we showed that peptidoglycan sacculi from Leptospira spp. retain the helical shape of intact cells. Interestingly, the distribution of muropeptides was different from that in the Escherichia coli model, indicating that specific enzymes might be active on the peptidoglycan macromolecule. We could alter the shape of Leptospira biflexa with the broad-spectrum β-lactam antibiotic penicillin G and with amdinocillin and aztreonam, which are β-lactams that preferentially target penicillin-binding protein 2 (PBP2) and PBP3, respectively, in some species. Although genetic manipulations of Leptospira spp. are scarce, we were able to obtain mutants with alterations in genes encoding PBPs, including PBP3. Loss of this protein resulted in cell elongation. We also generated an L. biflexa strain that conditionally expresses MreB. Loss of the MreB function was correlated with morphological abnormalities such as a localized increased diameter and heterogeneous length. A prolonged depletion of MreB resulted in cell lysis, suggesting that this protein is essential. These findings indicate that important aspects of leptospiral cell morphology are determined by the cytoskeleton and the murein layer, thus providing a starting point for a better understanding of the morphogenesis in these atypical bacteria
    corecore