709 research outputs found

    Fragility and compressibility at the glass transition

    Get PDF
    Isothermal compressibilities and Brillouin sound velocities from the literature allow to separate the compressibility at the glass transition into a high-frequency vibrational and a low-frequency relaxational part. Their ratio shows the linear fragility relation discovered by x-ray Brillouin scattering [1], though the data bend away from the line at higher fragilities. Using the concept of constrained degrees of freedom, one can show that the vibrational part follows the fragility-independent Lindemann criterion; the fragility dependence seems to stem from the relaxational part. The physical meaning of this finding is discussed. [1] T. Scopigno, G. Ruocco, F. Sette and G. Monaco, Science 302, 849 (2003)Comment: 4 pages, 2 figures, 2 tables, 33 references. Slightly changed after refereein

    Deforming glassy polystyrene: Influence of pressure, thermal history, and deformation mode on yielding and hardening

    Get PDF
    The toughness of a polymer glass is determined by the interplay of yielding, strain softening, and strain hardening. Molecular-dynamics simulations of a typical polymer glass, atactic polystyrene, under the influence of active deformation have been carried out to enlighten these processes. It is observed that the dominant interaction for the yield peak is of interchain nature and for the strain hardening of intrachain nature. A connection is made with the microscopic cage-to-cage motion. It is found that the deformation does not lead to complete erasure of the thermal history but that differences persist at large length scales. Also we find that the strain-hardening modulus increases with increasing external pressure. This new observation cannot be explained by current theories such as the one based on the entanglement picture and the inclusion of this effect will lead to an improvement in constitutive modeling

    Fatty Acid Methyl Esters as Biosolvents of Epoxy Resins: A Physicochemical Study

    Get PDF
    The C8 to C18 fatty acid methyl esters (FAME) have been compared as solvents for two epoxy resin pre-polymers, bisphenol A diglycidyl ether (DGEBA) and triglycidyl paminophenol ether (TGPA). It was found that the solubilization limits vary according to the ester and that methyl caprylate is the best solvent of both resins. To explain these solubility performances, physical and chemical properties of FAME were studied, such as the Hansen parameters, viscosity, binary diffusion coefficient and vaporization enthalpy. Determination of the physicochemical parameters of FAME was carried out by laboratory experimentations and by calculation from bibliographic data. The Hansen parameters of FAME and epoxy resins pre-polymers were theoretically and experimentally determined. The FAME chain length showed a long dependence on the binary diffusion parameters and kinematic viscosity, which are mass and momentum transport properties. Moreover, the vaporization enthalpy of these compounds was directly correlated with the solubilization limits

    Primary alkylphosphine–borane polymers: Synthesis, low glass transition temperature, and a predictive capability thereof

    Get PDF
    With a multitude of potential applications, poly(phosphine–borane)s are an interesting class of polymer comprising main-group elements within the inorganic polymer backbone. A new family of primary alkylphosphine–borane polymers was synthesized by a solvent-free rhodium-catalyzed dehydrocoupling reaction and characterized by conventional chemicophysical techniques. The thermal stability of the polymers is strongly affected by the size and shape of the alkyl side chain with longer substituents imparting greater stability. The polymers show substantial stability toward UV illumination and immersion in water; however, they undergo a loss of alkylphosphine units during thermal degradation. The polymers exhibit glass transition temperatures (Tg) as low as −70 °C. A group interaction model (GIM) framework was developed to allow the semiquantitative prediction of Tg values, and the properties of the materials in this study were used to validate the model

    Aerosols in atmospheric chemistry and biogeochemical cycles of nutrients

    Get PDF
    Atmospheric aerosols have complex and variable compositions and properties. While scientific interest is centered on the health and climatic effects of atmospheric aerosols, insufficient attention is given to their involvement in multiphase chemistry that alters their contribution as carriers of nutrients in ecosystems. However, there is experimental proof that the nutrient equilibria of both land and marine ecosystems have been disturbed during the Anthropocene period. This review study first summarizes our current understanding of aerosol chemical processing in the atmosphere as relevant to biogeochemical cycles. Then it binds together results of recent modeling studies based on laboratory and field experiments, focusing on the organic and dust components of aerosols that account for multiphase chemistry, aerosol ageing in the atmosphere, nutrient (N, P, Fe) emissions, atmospheric transport, transformation and deposition. The human-driven contribution to atmospheric deposition of these nutrients, derived by global simulations using past and future anthropogenic emissions of pollutants, is put into perspective with regard to potential changes in nutrient limitations and biodiversity. Atmospheric deposition of nutrients has been suggested to result in human-induced ecosystem limitations with regard to specific nutrients. Such modifications favor the development of certain species against others and affect the overall functioning of ecosystems. Organic forms of nutrients are found to contribute to the atmospheric deposition of the nutrients N, P and Fe by 20%–40%, 35%–45% and 7%–18%, respectively. These have the potential to be key components of the biogeochemical cycles since there is initial proof of their bioavailability to ecosystems. Bioaerosols have been found to make a significant contribution to atmospheric sources of N and P, indicating potentially significant interactions between terrestrial and marine ecosystems. These results deserve further experimental and modeling studies to reduce uncertainties and understand the feedbacks induced by atmospheric deposition of nutrients to ecosystems
    corecore