674 research outputs found

    Assessment of the Lunar Surface Layer and in Situ Materials to Sustain Construction-related Applications

    Get PDF
    Present and future technologies to facilitate lunar composition and resource assessment with applications to lunar surface construction are presented. We are particularly interested in the construction activity associated with lunar-based astronomy. We address, as an example, the use of ground-probing radar to help assess subsurface conditions at sites for observatories and other facilities

    Application of dynamical systems theory to a very low energy transfer

    Get PDF
    We use lobe dynamics in the restricted three-body problem to design orbits with prescribed itineraries with respect to the resonance regions within a Hill’s region. The application we envision is the design of a low energy trajectory to orbit three of Jupiter’s moons using the patched three-body approximation (P3BA). We introduce the “switching region,” the P3BA analogue to the “sphere of influence.” Numerical results are given for the problem of finding the fastest trajectory from an initial region of phase space (escape orbits from moon A) to a target region (orbits captured by moon B) using small controls

    OCCUPATIONAL IMPLICATIONS OF THE INDUSTRIAL ARTS PROGRAM IN COFFEYVILLE, KANSAS

    Get PDF
    The purpose of this thesis was to determine the occupational implications of an industrial arts curriculum when used as terminal education. Questionnaires were sent to: past students, selected to eliminate those having more than a high school education and those working in jobs not related to industrial arts training; employers selected on the basis of job requirements and number of employees; and state teachers chosen at random from all points of the state regardless of school size. The findings of the study indicate definite advantages for industrial art students when compared to people with similar education but not having the industrial arts training. Changes to be desired in the present program and the need for expansion of that program to meet anticipated increases in enrollment were brought to light also

    Design of a Multi-Moon Orbiter

    Get PDF
    The Multi-Moon Orbiter concept is introduced, wherein a single spacecraft orbits several moons of Jupiter, allowing long duration observations. The ΔV requirements for this mission can be low if ballistic captures and resonant gravity assists by Jupiter’s moons are used. For example, using only 22 m/s, a spacecraft initially injected in a jovian orbit can be directed into a capture orbit around Europa, orbiting both Callisto and Ganymede enroute. The time of flight for this preliminary trajectory is four years, but may be reduced by striking a compromise between fuel and time optimization during the inter-moon transfer phases

    The Genesis Trajectory and Heteroclinic Cycles

    Get PDF
    Genesis will be NASA's first robotic sample return mission. The purpose of this mission is to collect solar wind samples for two years in an L_1 halo orbit and return them to the Utah Test and Training Range (UTTR) for mid-air retrieval by helicopters. To do this, the Genesis spacecraft makes an excursion into the region around L_2 . This transfer between L_1 and L_2 requires no deterministic maneuvers and is provided by the existence of heteroclinic cycles defined below. The Genesis trajectory was designed with the knowledge of the conjectured existence of these heteroclinic cycles. We now have provided the first systematic, semi-analytic construction of such cycles. The heteroclinic cycle provides several interesting applications for future missions. First, it provides a rapid low-energy dynamical channel between L_1 and L_2 such as used by the Genesis Discovery Mission. Second, it provides a dynamical mechanism for the temporary capture of objects around a planet without propulsion. Third, interactions with the Moon. Here we speak of the interactions of the Sun-Earth Lagrange point dynamics with the Earth-Moon Lagrange point dynamics. We motivate the discussion using Jupiter comet orbits as examples. By studying the natural dynamics of the Solar System, we enhance current and future space mission design

    Binary Asteroid Observation Orbits from a Global Dynamical Perspective

    Get PDF
    We study spacecraft motion near a binary asteroid by means of theoretical and computational tools from geometric mechanics and dynamical systems. We model the system assuming that one of the asteroids is a rigid body (ellipsoid) and the other a sphere. In particular, we are interested in finding periodic and quasi-periodic orbits for the spacecraft near the asteroid pair that are suitable for observations and measurements. First, using reduction theory, we study the full two body problem (gravitational interaction between the ellipsoid and the sphere) and use the energy-momentum method to prove nonlinear stability of certain relative equilibria. This study allows us to construct the restricted full three-body problem (RF3BP) for the spacecraft motion around the binary, assuming that the asteroid pair is in relative equilibrium. Then, we compute the modified Lagrangian fixed points and study their spectral stability. The fixed points of the restricted three-body problem are modified in the RF3BP because one of the primaries is a rigid body and not a point mass. A systematic studydepending on the parameters of the problem is performed in an effort to understand the rigid body effects on the Lagrangian stability regions. Finally, using frequency analysis, we study the global dynamics near these modified Lagrangian points. From this global picture, we are able to identify (almost-) invariant tori in the stability region near the modified Lagrangian points. Quasi-periodic trajectories on these invariant tori are potentially convenient places to park the spacecraft while it is observing the asteroid pair

    Constructing a Low Energy Transfer Between Jovian Moons

    Get PDF
    There has recently been considerable interest in sending a spacecraft to orbit Europa, the smallest of the four Galilean moons of Jupiter. The trajectory design involved in effecting a capture by Europa presents formidable challenges to traditional conic analysis since the regimes of motion involved depend heavily on three-body dynamics. New three-body perspectives are required to design successful and efficient missions which take full advantage of the natural dynamics. Not only does a three-body approach provide low-fuel trajectories, but it also increases the flexibility and versatility of missions. We apply this approach to design a new mission concept wherein a spacecraft "leap-frogs" between moons, orbiting each for a desired duration in a temporary capture orbit. We call this concept the "Petit Grand Tour." For this application, we apply dynamical systems techniques developed in a previous paper to design a Europa capture orbit. We show how it is possible, using a gravitional boost from Ganymede, to go from a jovicentric orbit beyond the orbit of Ganymede to a ballistic capture orbit around Europa. The main new technical result is the employment of dynamical channels in the phase space - tubes in the energy surface which naturally link the vicinity of Ganymede to the vicinity of Europa. The transfer V necessary to jump from one moon to another is less than half that required by a standard Hohmann transfer

    Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics

    Get PDF
    In this paper we apply dynamical systems techniques to the problem of heteroclinic connections and resonance transitions in the planar circular restricted three-body problem. These related phenomena have been of concern for some time in topics such as the capture of comets and asteroids and with the design of trajectories for space missions such as the Genesis Discovery Mission. The main new technical result in this paper is the numerical demonstration of the existence of a heteroclinic connection between pairs of periodic orbits: one around the libration point L1 and the other around L2, with the two periodic orbits having the same energy. This result is applied to the resonance transition problem and to the explicit numerical construction of interesting orbits with prescribed itineraries. The point of view developed in this paper is that the invariant manifold structures associated to L1 and L2 as well as the aforementioned heteroclinic connection are fundamental tools that can aid in understanding dynamical channels throughout the solar system as well as transport between the "interior" and "exterior" Hill's regions and other resonant phenomena

    Invariant Manifolds, the Spatial Three-Body Problem and Space Mission Design

    Get PDF
    The invariant manifold structures of the collinear libration points for the spatial restricted three-body problem provide the framework for understanding complex dynamical phenomena from a geometric point of view. In particular, the stable and unstable invariant manifold \tubes" associated to libration point orbits are the phase space structures that provide a conduit for orbits between primary bodies for separate three-body systems. These invariant manifold tubes can be used to construct new spacecraft trajectories, such as a \Petit Grand Tour" of the moons of Jupiter. Previous work focused on the planar circular restricted three-body problem. The current work extends the results to the spatial case

    Gold-electroplating technology for X-ray-mask fabrication

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1996.Includes bibliographical references (p. 43-45).by Kenneth W. Yee.M.S
    corecore