There has recently been considerable interest in sending a spacecraft to orbit Europa, the smallest
of the four Galilean moons of Jupiter. The trajectory design involved in effecting a capture by Europa
presents formidable challenges to traditional conic analysis since the regimes of motion involved depend heavily on three-body dynamics. New three-body perspectives are required to design successful
and efficient missions which take full advantage of the natural dynamics. Not only does a three-body
approach provide low-fuel trajectories, but it also increases the flexibility and versatility of missions.
We apply this approach to design a new mission concept wherein a spacecraft "leap-frogs" between
moons, orbiting each for a desired duration in a temporary capture orbit. We call this concept the
"Petit Grand Tour."
For this application, we apply dynamical systems techniques developed in a previous paper to
design a Europa capture orbit. We show how it is possible, using a gravitional boost from Ganymede,
to go from a jovicentric orbit beyond the orbit of Ganymede to a ballistic capture orbit around
Europa. The main new technical result is the employment of dynamical channels in the phase space
- tubes in the energy surface which naturally link the vicinity of Ganymede to the vicinity of Europa.
The transfer V necessary to jump from one moon to another is less than half that required by a
standard Hohmann transfer