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Abstract

A critical component of proximity x-ray lithography is the patterning of the absorber
material on the x-ray mask. In this thesis methods and techniques have been advanced
to diagnose and solve a problem with the gold-electroplating process developed in the
MIT NanoStructures Laboratory for the purpose of patterning sub-0.1 pm absorber
features on x-ray masks. Bright-field transmitted-light optical microscopy in conjunc-
tion with a "thickness standard" was used to measure the thickness of the plated-gold
films. This method led to the diagnosis of a non-uniform gold-plating rate in which
the gold film was "depleted" at resist edges. To further elucidate the origin of this
defect, the electrochemistry of the plating solution was investigated. A means of char-
acterizing the cathode voltages of the plating reaction as a function of plating-current
density and brightener concentration was developed. The electrochemical study sug-
gests that chemical contamination in the plating solution had occurred, either from
use or initially from the manufacturer, and replacement of the solution was neces-
sary. This study also reveals that the composition of uncontaminated plating solution
varies with time as a result of the oxidation of a brightening additive to the solution.
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Chapter 1

Introduction

1.1 X-Ray Lithography Overview

With the desire for increased computing ability, there is a demand for increasing

the density per unit area of devices on integrated-circuit chips. This requires the

technology to fabricate devices with fine feature sizes and low defect density, and

under strict design tolerances.

Proximity x-ray lithography, first demonstrated in 1971 [1], is a technology capable

of producing feature sizes under 0.1 pm. It has many advantages for this application.

The wavelengths for soft x-rays (A from 0.5 nm to 40 nm) are smaller than minimum

feature sizes for most devices. Compared to deep-UV optical projection lithography,

proximity x-ray lithography offers a large depth of field, so that the effects of substrate

topography on lithography are minimized. Furthermore, since most materials have

an index of refraction of approximately 1 at x-ray wavelengths, scattering phenom-

ena (due to substrate composition or spurious dust particles) are minimized. Thus,

proximity x-ray lithography is, in principle, capable of producing fine, submicron fea-

tures with vertical sidewalls in a single-layer resist scheme, independent of substrate

composition and topography.

Proximity x-ray lithography is also desirable with respect to manufacturing re-

quirements. Because x-ray lithography is essentially "shadow casting" at x-ray wave-

lengths, the dependence on complicated optical systems with large fields of view is



minimized. Furthermore, x-ray lithography is a parallel process, thus making it de-

sirable in terms of increased throughput.

Proximity x-ray lithography is a highly desirable technology for the fabrication of

microelectronic devices, especially those that take advantage of small feature sizes,

such as quantum-effect devices (e.g. coulomb-blockade devices [2], planar resonant-

tunneling field effect-transistors (PRESTFETs) [3], [4], grid-gate transistor structures

[4]), opto-electronic devices (e.g. distributed-feedback lasers [5]), and deep-submicron

MOSFETs [6].

A critical component of this technology is the perfection of the x-ray mask. Be-

cause x-ray lithography is a proximity-printing technology, the absorber features on

the mask must be patterned to the same size as the features desired on the final

substrate. This presents a considerable technical challenge in fabricating the x-ray

masks. The MIT NanoStructures Laboratory (NSL) has expended considerable ef-

fort towards the development of x-ray masks. The current mask configuration will be

described in the next section.

1.1.1 X-Ray Masks

The x-ray mask blank used by the NSL consists of a 31-mm-diameter silicon-nitride

membrane supported by a silicon "mesa" ring anodically bonded to a Pyrex frame

(Figure 1-1) [7], [8]. The details of the fabrication are given in [9].

Gold is used as an absorber material for the x-ray mask. As discussed in [9], the

gold is patterned onto the mask by means of an electroplating procedure. In order

to plate the gold onto the x-ray mask blank, a plating base of a 50 A-thick nichrome

adhesion layer followed by a 100 A-thick gold seed layer is electron-beam evaporated

onto the mask blank.

1.1.2 Overview of Mask-Fabrication Process

We wanted to make an x-ray mask with sub-0.1-pm linewidths, using the process

developed by the NSL. This process is outlined below. The full details are discussed
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Figure 1-1: Photograph of the NSL mask blank [9]. The silicon-nitride membrane is
31 mm in diameter.
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in [9].

1. Coat mask blank with poly-(methyl-methacrylate) (PMMA). This will be the

"mother" mask.

2. Write this "mother" mask using scanning electron-beam lithography (SEBL).

(Figure 1-2(a))

3. Develop PMMA.

4. Plate gold onto the "mother" mask, using the PMMA as a mold, strip PMMA.

(Figure 1-2(b))

5. Evaporate gap-setting studs. (Figure 1-2(c))

6. Coat mask blank with PMMA. This will be the "daughter" mask.

7. Expose the "daughter" mask with the "mother" mask using the NSL's electron-

bombardment x-ray source. (Figure 1-2(d))

8. Develop PMMA.

9. Plate gold on the "daughter" mask, strip PMMA. (Figure 1-2(e))

10. Strip PMMA.

1.2 Difficulties Encountered

In attempting to follow the process for X-ray mask-fabrication, we encountered dif-

ficulties printing fine features from the "mother" mask onto the "daughter" mask

during the x-ray exposure.

As much of our work depended on having viable "daughter" masks for device

exposures, it was necessary to determine the origin of the difficulties and to improve

the existing process to resolve these fabrication issues. The approach we took was first

to identify the problem and then to understand its origin by using analytical tools and
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methods that we developed. The findings presented in this thesis indicate that the

problems with the mask fabrication were likely the result of chemical contamination

of the plating bath, either in the initial bath received from the vendor or through

usage.

In Chapter 2 the diagnosis of our mask problems will be presented. By inspecting

our plated masks using bright-field transmitted-light optical microscopy, we deter-

mined that our problems with replicating the "mother" mask onto the "daughter"

mask were due to a non-uniform gold-plating rate near the edges of the PMMA fea-

tures. Fine features would plate at a slower rate than coarse features. As a result,

the fine gold features on the "mother" mask were too thin to provide sufficient con-

trast in the subsequent x-ray exposure to print the corresponding features onto the

"daughter" mask. A possible cause for this "edge-depletion" defect was suggested by

the observation of bubble-like defects on other plated samples.

Chapter 3 describes experiments to understand the plating solution and its asso-

ciated additives electrochemically. There is some evidence that the "edge-depletion"

defect is related to undesired chemical reactions occurring in the plating solution. We

also observed that the electrochemical behavior of uncontaminated plating solution

changes as the solution "ages."

Finally, some preliminary conclusions will be presented in Chapter 4, as well a

summary of ongoing work.



Chapter 2

Diagnosis of Plating Defects

2.1 Motivation

Problems were observed in the mask fabrication process when transferring device

patterns from the "mother" mask onto the "daughter" mask. Typically, the larger

features would be transferred as expected, but the fine-features (e.g. sub-0.1 Pm gate

fingers) would not. A schematic illustration of this is shown in Figure 2-1.

On the "daughter" mask, the gold was plating as if the fine features on the

"mother" mask had failed to adequately absorb the exposing x-rays during the "mother"-

"daughter" exposure. The absence of a fine gold space on the "daughter" mask is

indicative that the PMMA mold for the gold-plating on the "daughter" mask did not

correspond to the gold patterns on the "mother" mask, as the fine gold features on

the "mother" mask had failed to transfer to the PMMA on the "daughter" mask.

Initially, diffraction effects during the x-ray lithography step and loss of PMMA

adhesion during mask processing were investigated as a possible cause of the pattern-

transfer problem. However, these were ruled out for reasons presented below:

1. Diffraction effects

Because the mask-replication exposure is a microgap exposure, the gap spac-

ing between the "mother" mask and the "daughter" mask is critical. If the

gap spacing is greater than a certain distance, diffraction may result in a low-
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Figure 2-1: Schematic illustration of the top views of a (a) defective "daughter" mask
and (b) its corresponding mother mask. The fine feature on the "daughter" mask is
absent. (The polarity reversal occurs when positive resist is used for the replication
of the "mother" onto the "daughter" mask.)

contrast exposure, and the fine features may not be replicated accurately onto

the "daughter mask." When the defective "daughter" masks were exposed, the

gap between "mother" and "daughter" mask was measured to be well under the

maximum allowable gap according to 9 = aw2
/ A, using a rv 1, x-ray wavelength

A = 1.3 nm, minimum resolvable linewidth w = 0.1 /-lm, and assuming 10db

x-ray attenuation in the absorber. This simple calculation yields a maximum

gap spacing of rv7 /-lm for resolving a O.l-/-lm-wide line, while the observed gaps

used during the exposures were on the order of 1 /-lm or less. Diffraction effects

were not likely to be the cause of the replication problems.

2. PMMA feature loss during the processing of the "daughter" mask

At various times during the development of the "daughter" mask, the sample

was inspected in an optical microscope, and the fine features were not visible

18
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Figure 2-2: An example of a sample with a uniform plating rate between coarse and
fine gold features. The gold thickness is 700 nm, the linewidth is 100 nm.

in the resist. This immediately suggests that the loss of PMMA features due to

indelicate processing is not occurring, as the fine features were absent even in

partially developed samples.

Since the replication problem seemed to be caused by an x-ray exposure problem,

the possibility of a non-uniform plating rate between coarse and fine features was

considered. If the fine features on the mother mask plate at a slower rate relative

to the plating rate of the larger features, then the fine gold features would not be of

sufficient thickness to provide the 10db contrast needed for the exposure. Normally,

this is not to be expected, and Figure 2-2 is a SEM micrograph of a sample that

demonstrated a uniform plating rate between coarse and fine features. But we decided

to explore the possibility of non-uniform plating rates more thoroughly. The findings

will be presented and discussed in Section 2.2.

At the same time, a study of the electrochemical properties of the plating reaction

was made to explore the possibility that the chemistry of the plating solution might

19



be leading to defective gold films. This will be discussed in Chapter 3.

2.2 Transmitted-Light Optical Microscopy

Bright-field transmitted-light optical microscopy is used to determine whether the

electroplated-gold film on an x-ray mask is sufficiently thick to provide the requisite

contrast for subsequent x-ray exposures. For CUL x-ray lines (1.3-nm wavelength),

a gold-film thickness of 200 nm is required to provide 10 dB contrast between open

regions and plated regions on the x-ray mask. By inspecting the transmission of

optical light through a plated region and comparing to the transmission of a "thickness

standard," (an x-ray mask membrane with various thicknesses of gold electron-beam

evaporated upon it) the thickness of the plated film is determined to within the

gradations in thickness of the gold films on the thickness standard.

One's choice in selecting the type of light source for the optical microscope is

dictated by the thickness of the gold film and its optical properties. Over most optical

wavelengths, the skin depth of a gold film is on the order of nanometers, so one would

expect a 200-nm-thick film of gold to be opaque over visible wavelengths (range of A

from 0.4 to 0.8 pm). However, a careful consideration of tabulated index-of-refraction

data reveals a transmissive peak in green light (wavelength roughly 0.5 pm) (Figure 2-

3. This transmissive peak in the green allows the use of the optical microscope with

conventional light sources for rough comparisons of gold-film thickness.

With conventional microscope light sources, the amount of light transmitted

through 200 nm of gold is barely discernable to the naked eye. In principle, the

comparison may also be done electronically by capturing the microscope image with

a CCD camera and correlating gray levels to thicknesses. In addition, a brighter light

source such as a laser may also be used to increase the discernable signal through

200-nm-thick films, or for thicker films.

The gold-thickness standard was prepared from an x-ray mask with the standard

plating base of 5 nm of NiCr and 10 nm Au evaporated onto the membrane. Various

thicknesses of gold (0, 100, 150 and 200 nm) were electron-beam evaporated onto
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this mask, by progressively opening the shutter to the evaporated-gold source and

exposing a larger area of the mask membrane at each evaporation step.

The thickness of the plated film may be determined to within the thickness grada-

tions on the thickness standard. This is done by comparing the observed intensity of

transmitted light through the plated-gold film on an x-ray mask with the intensity of

the transmitted light through the thickness standard. Typically, it is sufficient for the

plated-gold film to transmit less light than the 200-nm-thick region on the thickness

standard to insure 10 dB contrast at CUL wavelengths.

In order for a thickness standard to be reliable in determining the plated-gold-film

thickness optically on an x-ray mask, the membranes of both mask and standard must

have the same optical transmittivity, and they both must have the same thicknesses

of plating-base metals. Thickness standards appropriate for different types of mask

samples may be prepared, for example, with a nonstandard plating base.

2.2.1 Observation of "Edge-Depletion" Defects

When inspecting an x-ray mask with a 200-nm-thick plated-gold film in a transmitted-

light bright-field microscope, the plated regions should be virtually opaque using

conventional transmission illumination. By using a sub-stage condenser, the region

of illumination may be apertured down to a small area to facilitate this type of

transmission inspection.

The "problematic" masks (i.e. "mother" masks with patterns that could not be

reliably transferred onto the "daughter" masks) were inspected using the substage

condensor. When the area of illumination was aligned within the edge of a plated-

gold feature, a variation of brightness was observed, as illustrated in Figure 2-4. The

observed spot was brighter near the edge of the feature. This bright region would taper

away from the edge with a length scale on the order of micrometers. By comparing

the brightness of the spot near the edge of the feature to a thickness standard, we

concluded that the gold film near the edge of the resist mold was thinner than the

gold film in the "bulk" region of the feature. In one case, the thickness was estimated

to be approximately 100 nm, a factor of 2 thinner than the bulk thickness of 200 nm.
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Figure 2-4: Illustration of "edge-depletion" defects as viewed (a) in an optical mi
croscope using transmitted-light illumination. (b) Possible cross-section that would
result in (a).

The use of bright-field transmitted-light optical microscopy is limited to features

that can be resolved, sizes on the order of 0.5 p,m. With conventional sub-stage illu

mination and condensing and an appropriate thickness standard, measureable thick

nesses are limited to 200 nm or less. In principle, a brighter light source such as a laser

may be used to measure thicker films (or to increase the spot intensity through 200

nm-thick films). The use of laser illumination may yield spurious intensity variations

near the edges of plated features due to diffraction phenomena [11].

Transmitted-light microscopy with a substage condenser are used to measure the

thickness and plating rate of the gold features on an x-ray mask. Operationally, a

mask is plated for half of the time required to obtain the desired thickness based on

a previous rate. The thickness is determined by using the optical microscope and a

thickness standard, and the plating rate is recalibrated. The remainder of the film is

then plated. Inspection by optical microscopy is non-contact and thus poses minimal

23



risk to the silicon-nitride membrane. It is preferable to a previous method using a

profilometer to measure the step height between the resist mold and the region onto

which the gold is to be plated. Profilometer observations of edge-depletion defects

may also be obscured by noise, as the membrane is especially sensitive to ambient

vibrations.

2.2.2 Flex-Glass Substrates

Previously, samples were limited to silicon-wafer substrates or x-ray mask-blank sub-

strates. The advantage of using x-ray mask blanks over silicon-wafer substrates for

plating experiments is the ability to inspect plated samples using transmitted-light

illumination, due to the optically transmissive membrane onto which the gold films

are plated.

The films plated onto opaque silicon-wafer substrates cannot be inspected using

transmitted-light illumination. Film thickness must be determined either by inspect-

ing patterned features using a profilometer, or by cleaving the substrate and inspect-

ing the film cross section in an SEM. However, silicon-wafer substrates are easier

to prepare en masse than x-ray mask-blank substrates. Furthermore, due to their

mechanical robustness compared to the silicon-nitride-membrane configuration of the

x-ray mask, they are both easier to handle, and may be cleaved for cross-sectional

examination in the SEM.

The use of glass substrates for plating experiments allowed for the use of transmitted-

light bright-field microscopy on mechanically robust samples. Circular substrates of

Corning "Microsheet" glass with the same diameter and approximately the same

thickness as 3" silicon wafers were purchased [12]. These glass substrates were pre-

pared with exactly the same procedure used for silicon-wafer substrates, and are

compatible with the plating fixturing designed for silicon-wafer substrates. Plated-

gold films on these substrates may be inspected in the optical microscope using sub-

stage illumination, and inspection of cross-sectional regions on cleaved samples in the

SEM may also be performed. (Although the glass is amorphous and thus has no

crystal-symmetry directions along which to cleave, it is much more manageable than
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the easily-shattered silicon-nitride membrane on x-ray masks). The edge-depletion

problem described above was duplicated using flex-glass substrates and photoresist

patterned using conventional optical lithography.

2.2.3 Observation of "Bubble" Defects

Another observation was made on the flex-glass samples. In the plated-gold films,

circular defects (of diameters on the order of 1 Mm) were observed in the optical

microscope using transmitted-light illumination. These circular defects resembled

"bubbles" in the gold film. In some cases, there was vertical "streaking" on the film

that appeared to terminate on the circular defects.

We believed that the circular defects were caused by the formation of gaseous

bubbles on the surface of the cathode. At the site of bubble formation, the gold

ions are physically obstructed from reaching the cathodal surface. Thus the plating

reaction is effectively terminated, so long as the bubble remains attached. Figure 2-5

is a scanning-electron micrograph illustrating a bubble defect.

On some samples, possible evidence of bubble detachment was observed in the

form of "streaking" on the surface of the gold film, possibly as other bubbles are

dislodged.

Having found indirect evidence of gas evolution in the plated films, we attempted

to directly observe and confirm bubble evolution during the plating process, by simply

illuminating the set up as shown in Figure 2-6 and looking for any signs of bubbles

during the reaction.

Another attempt at direct bubble observations was made by inspecting a freshly-

plated sample. This sample had been removed carefully from the plating solution

so that the sample remained wet with plating solution. Thus any attached bubbles

would remain attached to the sample and possibly be visible in a low-magnification

stereo microscope or a conventional optical microscope. In both cases, for typical

current densities used in plating samples (from 0 to 0.8 mA/sq-cm), no bubbles were

observed. At "higher" current densities (greater than 1 mA/sq-cm), while watching

the plating reaction, a subtle disturbance to the solution was observed emanating from
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Figure 2-5: SEM photo of a possible bubble defect of diameter rvO.5 p,m.

the plating fixturing, floating upwards from the sample. The disturbance resembled

variations in indices of refraction in the solution, possibly corresponding to either

bubbling or local heating of the solution. Furthermore, on some wafer samples after

rinsing, the plated-gold film showed clear evidence of streaking emanating from the

points of electrical contact between the fixturing and the sample.

Similar "bubbling" behavior was not observed in experiments using a different

batch of the BDT-510 plating solution, nor were edge-depletion defects observed when

using the new batch of plating solution. We believed that these "bubble" phenomena

were the result of a tainted or contaminated plating solution. Replacement of the

plating solution with a fresh batch minimized the observed plating problems.
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Chapter 3

Electrochemistry of Gold Plating

3.1 Introduction

We studied the chemistry of the plating reaction to determine if the non-uniform

"edge-depleted" plating problem described in Section 2.2.1 could be explained and

solved chemically. As will be discussed, a reference electrode was used to study the

plating solution and associated "brightening" agents. Although these experiments

did not provide a conclusive diagnosis or solution to the "edge-depletion" problem,

additional insight was gained about the plating reaction and how it may be charac-

terized.

3.2 BDT-510 Plating Solution Chemistry

The plating solution we used was Sel-Rex BDT-510, a commercially available gold

sulfite solution [13]. BDT-510 is primarily an aqueous solution of sodium aurosulfite

(Na 3Au(SO3) 2). In addition to the gold(I) sulfite complex, it also includes sodium

sulfite (Na 2SO 3) and additional proprietary compounds added to maintain solution

conductivity and pH at appropriate levels [14].

The dissociation reaction of the aurosulfite ion is described by:

Au(S03)3- Au + + 2 (SO2-)

""•2':-



and the electroplating half-reaction at the cathode is given by:

Au + + e- - Au(s).

In our laboratory set-up, the electrons are provided by a regulated current source.

The deposition rate is controlled by the amount of current. The tabulated current-

time, measured film thickness and plating area may be used to calculate the plating

efficiency, the fraction of electrons consumed by the gold-plating reaction, according

to a simple plating model.

In addition to the basic gold-plating solution, BDT-510 is used with a proprietary

compound called BDT Brightener. The BDT Brightener provides arsenite ions, which

are incorporated into the film as arsenic [15]. The brightener limits the size of the

plated gold grains by providing nucleation sites for the gold at each arsenic "impurity."

This inhibits the formation of crystalline spikes or dendrites of gold, resulting in a

film morphology that is smooth to the order of the gold-grain size.

The half reactions associated with the brightener include the reduction of the

arsenite ion into arsenic at the cathode:

AsO2 + 4 H+ + 3 e- -+ As(s) + 2 H20

and the oxidation of arsenite into arsenate ion:

AsO2 + 2 H20-+ AsO3- + 4 H+ + 2 e-. [16]

We suspected that the non-uniform plating problems might be related to the

brightener. Although the use of brightener is standard for most gold-plating appli-

cations (e.g. jewelry), it was not clear if brightener was recommended for plating

sub-micron features on x-ray masks. Another concern was that the plating solu-

tion might have been contaminated. In some plating runs, the plating efficiency was

observed to be anomalously low (~30% or less). We suspected that the plating ef-

ficiency was low as a result of chemical reactions other than the reactions needed

for gold plating. Any undesired reactions might be affecting the uniformity of the



Potential

Cathc
Poten

ode
tential

Position

Cathode Anode

Figure 3-1: Illustration of potential distribution in a typical electroplating reaction

plated-gold film, leading to the "edge depletion" defects we had observed in the op-

tical microscope using transmitted-light illumination (Section 2.2.1). One common

reaction seen in electrochemical reactions is the reduction of hydrogen i6n into hy-

drogen gas. It is possible that contamination in the bath might lower the threshold

for hydrogen evolution, thus reducing the plating efficiency and perhaps affecting the

uniformity of the plated-gold film.

3.3 Reference Electrode

In order to gain a better understanding of the electrochemical reactions occuring

during the plating reaction, a saturated-calomel reference electrode (SCE) was added

to the plating system. The use of a reference electrode allowed us to measure the

electrochemical potentials at a given electrode with respect to the solution, and to

gain insight into the reactions occuring at each electrode (Figures 3-1 and 3-2)

These measurements can potentially yield information on the effective concen-
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Figure 3-2: Schematic of plating circuit illustrating SCE placement

tration of brightening additives, the "quality" of the bath, and whether the plating

process might be operating in a regime conducive to plating gold onto x-ray masks.

For our purposes, we concentrated on measuring the potential difference between

the cathode, where the gold plating is occurring, and the SCE. The anode potential

may be similarly measured.

3.3.1 Hull-Cell Measurements

A commercially-available Hull plating cell was initially used to observe the effect of

BDT-Brightener concentration (and hence arsenite concentration) on the electrical

characteristics of BDT-510 plating solution. A schematic diagram of a Hull cell is

shown in Figure 3-3. [17]

An SCE was used to measure the cathodic potential with respect to SCE as a

function of anode current. The results of this measurement are shown in Figure 3-4.

The magnitude of the cathodic potential decreases as the brightener concentration

......... °.. .............
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Figure 3-3: Illustration of a Hull plating cell. The geometric configuration of the Hull
cell dictates the current-density distribution at the cathode.

Increases, until the brightener concentration reaches a "saturation" concentration.

Further addition of brightener has little effect on the cathodic potential as a function

of brightener concentration.

The use of a Hull cell for the purpose of measuring the cathodic potential as a

function of brightener concentration and plating-current density is not ideal. The

main problem with the Hull cell in this application is that the Hull-cell geometry is

designed so that the plating-current density varies over the area of the cathode surface

[17]. The cathodic-potential measurement is not uniquely correlated to a plating

current density at the cathode. Furthermore, the Hull-cell measurement cannot be

performed during an actual mask-plating run and must be performed separately. An

in-situ measurement is preferred.
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3.3.2 In-situ Measurement

In the NSL plating setup, an SCE is placed in the plating solution, and the voltage

between the x-ray mask (or other sample to be plated) and the SCE is measured.

This voltage is the cathodic potential, with respect to the solution potential.

The placement of the SCE in the solution is not a critical parameter in this case,

as the gold-plating solution is highly conductive. This was confirmed by performing a

plating experiment using a silicon plating-base monitor wafer as the cathode, holding

the plating current (and thus the plating-current density) constant, and measuring

the cathodic potential when the SCE is placed at different positions in the plating

tank. The variations in the voltage measurements were observed to be less than

0.01 V, which is sufficiently stable for our purposes. This establishes that the voltage

drop in the solution can be neglected relative to the voltage drops at the electrodes.

3.4 Experimental Results

3.4.1 Varying Concentration of BDT Brightener

Measurements of the cathode potential with respect to plating-current density were

performed, using the NSL plating fixturing. A silicon-wafer plating-base monitor was

used as the cathode. A fresh BDT-510 plating solution was used to obtain "baseline"

measurements. The concentration of BDT Brightener in the plating solution was

increased between measurements. The results are shown in Figure 3-5.

For a given current-density, the cathodic potential can be correlated to the bright-

ener concentration, suggesting a method of measuring the concentration of the bright-

ener in the plating solution, and thus the concentration of the arsenite ion in the

solution. However, it should be noted that the arsenite concentration can not be ac-

curately determined from the measured cathodic potential without detailed knowledge

of the composition of the proprietary BDT-510 plating solution and BDT Brightener.

Other researchers have developed analytical techniques to quantitatively measure

the concentration of the arsenite ion in solution. These techniques require specialized
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chromatographic equipment and techniques, as the presence of sulfite ions from the

plating bath interferes with the measurement of the arsenite ion [18].

3.4.2 Age of Plating Bath

The .behavior of the plating bath over time is another issue with respect to under-

standing the bath chemistry. Figure 3-6 shows the cathodic potential as a function

of plating-current density for the same plating bath, taken at various times over the

course of few weeks.

This solution aging occurs as a result of the dissociation reaction of the arsenite ion

into arsenate ion. Also, the arsenite ion is normally plated out as arsenic to brighten

the gold plate (the arsenate ion remains unchanged during the plating reaction) [15].

Futhermore, the presence of the sulfite ion catalyzes the the oxidation of the arsenite

into arsenate in the ambient air of the laboratory [18]. With respect to gold plating,

this means that the effective concentration of brightener decreases with time.

3.4.3 Measurement of Defective Bath

We measured the cathode potentials versus plating-current density of the "defective"

plating bath to compare with the measurements of a freshly-mixed solution. Any

differences in the curves are possibly related to undesired chemical reactions which

might contribute to the "edge-depletion!' defects described in Section 2.2.1.

The cathode voltage as a function of plating-current density of the NSL plating

bath were measured and compared to the measurements of Section 3.4.1 (Figure 3-7).

For current densities less than 0.8 mA/sq-cm, the defective-NSL-plating-bath

curve follows the the zero-brightener curve closely. At higher current densities, the

measured cathode voltage increases in magnitude faster than the zero-brightener

curve.
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3.5 Discussion of Measurements

According to the cathode-potential measurement, the defective-NSL-plating-bath volt-

ages correspond to those of BDT-510 without BDT Brightener. This alone is not the

problem, as can be seen in the higher-current-density behavior (around 1 mA/sq-cm).

Furthermore, at various current densities from 0.2 to 1.0 mA/sq-cm, gold plated onto

silicon plating-base monitor wafers using the defective NSL plating bath appeared red

and less bright in scattered light, whereas gold plated using fresh BDT-510 without

brightener appeared gold in scattered light, and comparatively less rough.

The electrical characteristics of the NSL bath might be explained by bath ag-

ing (and oxidation of the arsenite ion). The morphological differences between the

NSL bath and BDT-510 without brightener are likely due to something other than

brightener deficiency.

The relative increase in the cathode potential around 1.0 mA/sq-cm suggests that

reactions other than the typical plating reaction are occurring. This is consistent with

the observation of low plating efficiencies in some plating runs, and the observation

of bubble-like features in some plated-gold films (described in Section 2.2.3) suggests

that one component of the undesired reactions includes bubble evolution. Lacking

any further information, we decided that the plating bath had been contaminated

either through use or prior to acquisition from the vendor, and replaced it with a

fresh bath of BDT-510.
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Chapter 4

Conclusions

The problems we encountered with mask replication were found to be the result of a

non-uniform plating rate in our gold films near resist edges. These "edge-depletion"

defects caused the fine-gold features on our x-ray masks to be thin relative to the

coarse features. As a result, there was insufficient contrast in the x-ray exposures to

print the fine features from the masks. The "edge-depletion" defects were observed

by inspecting the plated masks in an optical microscope and using transmitted-light

illumination. The likely presence of undesired reactions was suggested by the presence

of "bubble" defects. Furthermore, electrochemical measurements of the cathode-

voltage behavior of the BDT-510 plating bath suggested that our problems were

likely due to chemical contamination. Replacement of the plating solution from a

different batch of BDT-510 was necessary.

The use of bright-field transmitted-light microscopy in conjunction with a "thick-

ness standard" also provides a convenient method of measuring the thickness of plated

films in the optical microscope, as an alternative to profilometric or interferometric

methods.

Electrochemical measurements of untainted BDT-510 plating solution suggest that

the active ingredient in the BDT Brightener (arsenite ion) oxidizes readily in the

laboratory environment. Thus, the effective concentration of brightener in the plating

bath varies according to the age of the plating bath.

This has potential implications with regards to being able to plate gold films at



"low" stress reproducibly over the lifetime of the bath, as the stress of the plated gold

film depends on the amount of arsenite in the plating bath [18].

Continuing work with gold-plating technology pertaining to x-ray mask fabrica-

tion could include a study of the dependence of plated-gold film stress as functions

of brightener concentration and/or bath age for the BDT-510 gold-plating solution.

Another direction might include the study of alternative plating solutions. Enthone-

OMI Neutronex 309 is a gold-sulfite-based plating bath that uses a thallium-based

brightener and has been reported to be able to plate gold films at low stress over a

wide range of brightener concentrations [19]. The addition of AC components to the

current source (so-called "pulse plating") is another area that could be explored with

respect to film uniformity and morphology.
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