716 research outputs found

    Phase Diagram of the BCC S=1/2 Heisenberg Antiferromagnet with First and Second Neighbor Exchange

    Full text link
    We use linked-cluster series expansions, both at T=0 and high temperature, to analyse the phase structure of the spin-\half Heisenberg antiferromagnet with competing first and second-neighbor interactions on the 3-dimensional body-centred-cubic lattice. At zero temperature we find a first-order quantum phase transition at J2/J10.705±0.005J_2/J_1 \simeq 0.705 \pm 0.005 between AF1_1 (Ne\'el) and AF2_2 ordered phases. The high temperature series yield quite accurate estimates of the bounding critical line for the AF1_1 phase, and an apparent critical line for the AF2_2 phase, with a bicritical point at J1/J20.71J_1/J_2\simeq 0.71, kT/J10.34kT/J_1\simeq 0.34. The possibility that this latter transition is first-order cannot be excluded.Comment: 10 pages, 4 figure

    Heat Capacity and Magnetic Phase Diagram of the Low-Dimensional Antiferromagnet Y2_2BaCuO5_5

    Full text link
    A study by specific heat of a polycrystalline sample of the low-dimensional magnetic system Y2_2BaCuO5_5 is presented. Magnetic fields up to 14 T are applied and permit to extract the (TT,HH) phase diagram. Below μ0H2\mu_0H^*\simeq2 T, the N\'eel temperature, associated with a three-dimensional antiferromagnetic long-range ordering, is constant and equals TN=15.6T_N=15.6 K. Above HH^*, TNT_N increases linearly with HH and a field-induced increase of the entropy at TNT_N is related to the presence of an isosbestic point at TX20T_X\simeq20 K, where all the specific heat curves cross. A comparison is made between Y2_2BaCuO5_5 and the quasi-two-dimensional magnetic systems BaNi2_{2}V2_{2}O8_{8}, Sr2_2CuO2_2Cl2_2, and Pr2_2CuO4_4, for which very similar phase diagrams have been reported. An effective field-induced magnetic anisotropy is proposed to explain these phase diagrams.Comment: 14 pages, 7 figure

    A Computation of the Maximal Order Type of the Term Ordering on Finite Multisets

    Get PDF
    We give a sharpening of a recent result of Aschenbrenner and Pong about the maximal order type of the term ordering on the finite multisets over a wpo. Moreover we discuss an approach to compute maximal order types of well-partial orders which are related to tree embeddings

    Electronic density of states derived from thermodynamic critical field curves for underdoped La-Sr-Cu-O

    Full text link
    Thermodynamic critical field curves have been measured for La2xSrxCuO4+δLa_{2-x}Sr_{x}CuO_{4+\delta} over the full range of carrier concentrations where superconductivity occurs in order to determine changes in the normal state density of states with carrier concentration. There is a substantial window in the HTH-T plane where the measurements are possible because the samples are both thermodynamically reversible and the temperature is low enough that vortex fluctuations are not important. In this window, the data fit Hao-Clem rather well, so this model is used to determine HcH_c and κc\kappa_c for each temperature and carrier concentration. Using N(0) and the ratio of the energy gap to transition temperature, Δ(0)/kBTc\Delta (0)/k_BT_c, as fitting parameters, the HcvsTH_c vs T curves give Δ(0)/kBTc2.0\Delta (0)/k_BT_c \sim 2.0 over the whole range of xx. Values of N(0) remain rather constant in the optimum-doped and overdoped regime, but drops quickly toward zero in the underdoped regime.

    Complexity Bounds for Ordinal-Based Termination

    Full text link
    `What more than its truth do we know if we have a proof of a theorem in a given formal system?' We examine Kreisel's question in the particular context of program termination proofs, with an eye to deriving complexity bounds on program running times. Our main tool for this are length function theorems, which provide complexity bounds on the use of well quasi orders. We illustrate how to prove such theorems in the simple yet until now untreated case of ordinals. We show how to apply this new theorem to derive complexity bounds on programs when they are proven to terminate thanks to a ranking function into some ordinal.Comment: Invited talk at the 8th International Workshop on Reachability Problems (RP 2014, 22-24 September 2014, Oxford

    Quantum Phase Transition of Randomly-Diluted Heisenberg Antiferromagnet on a Square Lattice

    Get PDF
    Ground-state magnetic properties of the diluted Heisenberg antiferromagnet on a square lattice are investigated by means of the quantum Monte Carlo method with the continuous-time loop algorithm. It is found that the critical concentration of magnetic sites is independent of the spin size S, and equal to the two-dimensional percolation threshold. However, the existence of quantum fluctuations makes the critical exponents deviate from those of the classical percolation transition. Furthermore, we found that the transition is not universal, i.e., the critical exponents significantly depend on S.Comment: RevTeX, 4 pages including 5 EPS figure

    Generalized calculation of magnetic coupling constants for Mott-Hubbard insulators: Application to ferromagnetic Cr compounds

    Full text link
    Using a Rayleigh-Schr\"odinger perturbation expansion of multi-band Hubbard models, we present analytic expressions for the super-exchange coupling constants between magnetic transition metal ions of arbitrary separation in Mott-Hubbard insulators. The only restrictions are i) all ligand ions are closed shell anions and ii) all contributing interaction paths are of equal length. For short paths, our results essentially confirm the Goodenough-Kanamori-Anderson rules, yet in general there does not exist any simple rule to predict the sign of the magnetic coupling constants. The most favorable situation for ferromagnetic coupling is found for ions with less than half filled d shells, the (relative) tendency to ferromagnetic coupling increases with increasing path length. As an application, the magnetic interactions of the Cr compounds Rb2_2CrCl4_4, CrCl3_3, CrBr3_3 and CrI3_3 are investigated, all of which except CrCl3_3 are ferromagnets.Comment: 13 pages, 6 eps figures, submitted to Phys Rev

    Classical Correlation-Length Exponent in Non-Universal Quantum Phase Transition of Diluted Heisenberg Antiferromagnet

    Get PDF
    Critical behavior of the quantum phase transition of a site-diluted Heisenberg antiferromagnet on a square lattice is investigated by means of the quantum Monte Carlo simulation with the continuous-imaginary-time loop algorithm. Although the staggered spin correlation function decays in a power law with the exponent definitely depending on the spin size SS, the correlation-length exponent is classical, i.e., ν=4/3\nu=4/3. This implies that the length scale characterizing the non-universal quantum phase transition is nothing but the mean size of connected spin clusters.Comment: 4 pages, 3 figure

    Specific heat of quasi-2D antiferromagnetic Heisenberg models with varying inter-planar couplings

    Full text link
    We have used the stochastic series expansion (SSE) quantum Monte Carlo (QMC) method to study the three-dimensional (3D) antiferromagnetic Heisenberg model on cubic lattices with in-plane coupling J and varying inter-plane coupling J_perp < J. The specific heat curves exhibit a 3D ordering peak as well as a broad maximum arising from short-range 2D order. For J_perp << J, there is a clear separation of the two peaks. In the simulations, the contributions to the total specific heat from the ordering across and within the layers can be separated, and this enables us to study in detail the 3D peak around T_c (which otherwise typically is dominated by statistical noise). We find that the peak height decreases with decreasing J_perp, becoming nearly linear below J_perp = 0.2J. The relevance of these results to the lack of observed specific heat anomaly at the ordering transition of some quasi-2D antiferromagnets is discussed.Comment: 7 pages, 8 figure

    The Heisenberg model on the 1/5-depleted square lattice and the CaV4O9 compound

    Full text link
    We investigate the ground state structure of the Heisenberg model on the 1/5-depleted square lattice for arbitrary values of the first- and second-neighbor exchange couplings. By using a mean-field Schwinger-boson approach we present a unified description of the rich ground-state diagram, which include the plaquette and dimer resonant-valence-bond phases, an incommensurate phase and other magnetic orders with complex magnetic unit cells. We also discuss some implications of ours results for the experimental realization of this model in the CaV4O9 compound.Comment: 4 pages, Latex, 7 figures included as eps file
    corecore