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Ground-state magnetic properties of the diluted Heisenberg antiferromagnet on a square lattice are
investigated by means of the quantum Monte Carlo method with the continuous-time loop algorithm. It
is found that the critical concentration of magnetic sites is independent of the spin size S, and equal to
the two-dimensional percolation threshold. However, the existence of quantum fluctuations makes the
critical exponents deviate from those of the classical percolation transition. Furthermore, we found that
the transition is not universal, i.e., the critical exponents significantly depend on S.

PACS numbers: 75.10.Jm, 75.10.Nr, 75.40.Cx, 75.40.Mg

Since the discovery of high-temperature superconduc-
tivity in cuprates [1], effects of nonmagnetic impurities
in two-dimensional Heisenberg antiferromagnets (HAF’s)
have been studied extensively. As is well known, the
antiferromagnetic (AF) long-range order in pure La2CuO4
(S � 1�2 HAF) is immediately destroyed by a small
amount of Sr substitution for La. Itinerant holes, doped
into the CuO2 plane, cause magnetic frustration among
Cu S � 1�2 spins and destroy the AF order. On the
other hand, the AF long-range order is much robust [2–5]
against static magnetic impurities such as S � 0 Mg
or Zn in La2CuO4, and Mg in K2CoF4 (S � 1�2 Ising
AF) or K2MnF4 (S � 5�2 HAF). However, it is notable
that the critical concentration of nonmagnetic impurities
strongly depends on the system in these cases. The critical
concentration of La2Cu12xMgxO4 and La2Cu12xZnxO4
is observed [4] as x � 20%. It makes a sharp contrast
with the others [2,3], where the critical concentration is
almost equal to the two-dimensional percolation threshold
(x � 40%). In La2Cu12xMgxO4 and La2Cu12xZnxO4, a
quantum disordered phase may be realized due to strong
quantum fluctuations.

These experimental results, and also purely theoretical
interests, have motivated recent theoretical and also nu-
merical studies [6–8] on the site-diluted HAF on the
square lattice:

H � J
X

�i,j�
ei ej Si ? Sj . (1)

Here, Si � �Sx
i , S

y
i , Sz

i � denotes the quantum spin-S opera-
tor at site i, and the nearest-neighbor coupling constant
is antiferromagnetic (J . 0). The quenched dilution fac-
tors �ei� independently take 1 or 0 with probability p and
1 2 p, respectively, where p (� 1 2 x) denotes the con-
centration of magnetic sites.

In the classical case (S � `), the present model at
zero temperature is equivalent to the site-percolation prob-

lem [9]. It is well known that the system undergoes a
second-order phase transition at the percolation threshold
pcl, which is determined as

pcl � 0.592 746 0�5� (2)

by the most recent simulation [10]. Near pcl, the staggered
magnetization vanishes as Ms � �p 2 pcl�bcl with bcl �
5�36 � 0.13888 . . . [9].

The main subjects in the previous works [6–8] have
been focused on whether the critical concentration of the
quantum systems (S , `), referred to as p� hereafter,
is identical to that of the classical model, pcl, or not,
and also on its dependence on the strength of quantum
fluctuations specified by the spin size S. For S � 1�2,
p� . pcl is suggested in these studies [6–8,11]. For ex-
ample, p� � 0.655 and 0.695 are obtained in [6] and [8],
respectively. However, they are still inconclusive and criti-
cal properties of the quantum phase transition and the
quantum disordered phase (if exists) between p� and pcl
have not been well understood.

In this paper, we report results of large-scale quantum
Monte Carlo (QMC) simulations on the diluted HAF (1)
with S � 1�2, 1, 3�2, and 2. It is found, as we see below,
that the AF long-range order at T � 0 persists so long as
a cluster of magnetic sites percolates, that is, p� � pcl,
even in the S � 1�2 case. However, we find the critical
exponents of the quantum phase transition just at pcl are
clearly different from those of the classical transition; the
critical exponents vary depending on the value of S.

In the present QMC simulation, use of the continuous-
time loop algorithm [12–15] is crucial. It greatly reduces
correlations between successive world-line configurations,
and therefore makes it possible to perform highly reliable
simulations on large lattices (up to L 3 L � 48 3 48) at
extremely low temperatures (T � 0.001J). Another im-
portant feature of the present algorithm is its ergodicity;
the winding number of world lines around vacant sites can
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change and the ground-canonical ensemble can be simu-
lated. We use the periodic boundary conditions. For each
sample, 104 Monte Carlo steps (MCS) are spent for mea-
surement after 103 MCS for thermalization. At each pa-
rameter set �L, T , p�, physical quantities are averaged over
100–1000 samples.

First, we discuss the zero-temperature staggered magne-
tization Ms�p� for p . pcl, which is calculated as

M2
s �p� � lim

L!`
lim
T!0

3Ss�L, T , p�
Ld

(3)

in terms of the static structure factor defined by

Ss�L, T , p� �
1

Ld

X

i,j

ei �k?��ri2�rj��Sz
i Sz

j � (4)

at the momentum �k � �p, p�, where d is the spatial di-
mension (d � 2). The bracket in Eq. (4) denotes both
the thermal average and the average over samples. In the
present simulation, we use an improved estimator to cal-
culate Ss�L, T , p�, by which the variance of data is greatly
reduced.

At temperatures lower than the gap of a finite system,
Ss�L, T , p� converges to its zero-temperature value quite
rapidly (probably exponentially). To obtain Ss�L, T �
0, p� at each p and L, we perform QMC simulations at low
enough temperatures so that Ss�L, T , p� exhibits no tem-
perature dependence besides statistical errors. Note that as
p decreases the gap of a system of linear size L becomes
smaller, and therefore lower temperature is needed [16].
For the S � 1�2 case, T is taken as 0.002J at p � 0.625
and L � 48.

In Fig. 1, we plot Ss�L, 0, p��Ld against 1�L for
0.625 # p # 1 in the S � 1�2 case. It is clearly seen
that the data at each concentration fall on a straight line
for large L. In the clean system (p � 1), the leading
finite-size correction is shown to be of O�1�L� according
to the spin-wave theory [17]. The similar behavior for
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FIG. 1. System-size dependence of Ss�L, T � 0, p��Ld in the
case of S � 1�2 at p � 1, 0.875, 0.8125, 0.75, 0.6875, 0.65,
and 0.625 (from upper to lower). The dashed lines are obtained
by least-squares fitting for the largest three system sizes for each
p. The extrapolated values are denoted by solid symbols. The
data with p # 0.6875 and L $ 24 are also shown in the inset.

p , 1 indicates that there exists an AF long-range order
with massless excitations, such as spin waves, even in the
presence of impurities. Thus, the staggered magnetization
in the thermodynamic limit is obtained by linear extrapo-
lation in 1�L for the three largest system sizes at each p.

The final results for the zero-temperature staggered
magnetization are shown in Fig. 2. It is seen that the
staggered magnetization remains finite even at p � 0.625
both in the S � 1�2 and 1 cases. The possibility that p� is
greater than 0.625 is excluded definitely, and the behavior
of the whole magnetization curve strongly suggests that
the critical concentration is identical to the percolation
threshold (p� � pcl). Actually, the staggered magneti-
zation seems to vanish algebraically towards p � pcl as
seen in the inset of Fig. 2. By least-squares fitting, we
estimate the critical exponent b as 0.46(3) and 0.32(3) for
S � 1�2 and 1, respectively. Our conjecture, p� � pcl, is
supported more convincingly by the power-law behavior
of the zero-temperature static structure factor just at
p � pcl:

Ss�L, 0, pcl� � LC (5)

with C � 1.17�6� and 1.57(3) for S � 1�2 and 1, respec-
tively. This is shown in Fig. 3, where no tendency of
saturation of Ss�L, 0, pcl� is seen at all up to L � 48.

The critical exponents b and C, obtained by the above
analysis, differ from those of the percolation model (b �
5�36 and C � 43�24 [9]), that is, the universality class
of the quantum phase transition at p � pcl is different
from the classical one. Furthermore, we found that the
values of the critical exponents for S � 1�2, 1, and `

clearly differ from each other. This means that not only the
fractal nature of the lattice geometry, but also the existence
of quantum fluctuations and their strength, or the value of
S, is relevant to the criticality.
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FIG. 2. Concentration dependence of the (normalized) stag-
gered magnetization in the cases of S � 1�2 (square) and 1
(triangle). The dotted lines are guides for the eye. In the inset,
we show the double-logarithmic plot of the staggered magne-
tization against �p 2 pcl�. The dashed lines are obtained by
least-squares fitting for p # 0.70. For comparison, the stag-
gered magnetization in the classical limit is also plotted by the
solid line and diamonds.
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FIG. 3. System-size dependence of Ss�L, T � 0, p� at p �
pcl in the cases of S � 1�2 (square) and 1 (triangle). The
dashed lines are obtained by least-squares fitting for L $ 24.
The slope of the lines gives the exponent C [Eq. (5)]. The data
in the classical limit are also plotted by diamonds.

The critical properties of the quantum phase transition
found above may be described by the following scaling
argument which is based on two assumptions on the quan-
tum spin correlation on spin clusters. At p � pcl, all
clusters are fractal with a fractal dimension D (in two
dimensions, D � 91�48) [9]. First, we assume that the
staggered spin correlation between two sites, i and j, on a
cluster behaves as

C�i, j� � r2a
i,j for ri,j ¿ 1 , (6)

where ri,j � j �ri 2 �rjj. Here, we introduce a new S-
dependent exponent a � a�S� $ 0. In the classical case,
C�i, j� takes a constant independent of ri,j , i.e., a�`� � 0.
Together with the cluster-size distribution at p � pcl, pre-
dicted by the percolation theory [9], we obtain

Ss�L, 0, pcl� �
1

Ld

X

V

X

i,j[V

C�i, j� � L2D2d2a , (7)

where the first summation is taken over clusters on the lat-
tice. Comparing Eq. (7) with Eq. (5), we obtain a scaling
relation:

C � 2D 2 d 2 a . (8)

On the other hand, for p . pcl, the percolation the-
ory [9] says that there exists a characteristic length l�p�,
below which the percolated cluster exhibits a fractal na-
ture similar to that of clusters at p � pcl, but it has the
ordinary dimension (d � 2) at the longer length scale.
For L ¿ l�p�, Ss�L, T , p� is dominated by the percolated
cluster. We introduce the second assumption that there
exist no other macroscopic characteristic lengths except
l�p� even in the S , ` cases. Since there exists an AF
long-range order as shown before, the correlation function
is expected to obey the following scaling form [18]:

C�i, j; p� � r2a
i,j C̃	ri,j�l�p�


� l�p�2a for ri,j ¿ l�p� , (9)

where C̃�x� � const for x ! 0, so that Eq. (6) is repro-
duced for 1 ø ri,j ø l�p�.

Using the fact that the characteristic length scale l�p�
diverges as �p 2 pcl�2n near pcl with n � 4�3 [9], and
assuming the ordinary algebraic temperature dependence,
one finally reaches a full finite-size scaling (FSS) form of
the structure factor:

Ss�L, T , p� � L2D2d2aS̃s	L1�n�p 2 pcl�, LzT 
 ,

(10)

where the S-dependent scaling function S̃s�x, y� takes a
constant at �x, y� � �0, 0�, and S̃s�x, 0� � x2�2D22d2a�n

for x ¿ 1. In Eq. (10), we introduce the dynamical ex-
ponent z, which relates the energy scale with the length
scale [19]. In the present case, z . 1 is expected, since
the Lorentz invariance is broken due to the existence of
impurities. Although the algebraic T dependence assumed
in Eq. (10) is not guaranteed a priori, finite-temperature
data of the staggered structure factor at p � pcl are well
scaled for S � 1�2, 1, 3�2, and 2, by using our FSS form
(10) with the exponents C and z listed in Table I, as shown
in Fig. 4. The values of C are consistent with those ob-
tained by the FSS at T � 0 [Eq. (5) and Fig. 3]. Note that
not only C but also z depend on S.

The critical exponent b is also expressed in terms of
a. By taking L ! ` after taking the limit of T ! 0 in
Eq. (10), one obtains

2b � 2�2D 2 2d 2 a�n . (11)

The values of n calculated from C and b through Eqs. (8)
and (11) are consistent with n � 4�3 (Table I), which
supports the scaling argument proposed above.

In summary, we have investigated the ground-state phase
transition of the diluted HAF with S � 1�2, 1, 3�2, and
2. Contrary to the previous works [6–8,11], our present
QMC study has shown that the critical concentration is
equal to the classical percolation threshold even in the
S � 1�2 case. Concerning the relation to experiments, it
becomes clear that the present model (1) is too much ideal-
ized to predict the magnetic properties observed in the real
materials. Other effects, such as next-nearest-neighbor
interaction, should be included properly into the model
Hamiltonian. On the other hand, in the theoretical point

TABLE I. Summary of critical exponents C, z, b, and n. C
and z are obtained by the FSS shown in Fig. 4, and b is esti-
mated from the staggered magnetization (Fig. 2). The exponent
n is calculated from b and C thorough the scaling relations,
Eqs. (8) and (11).

S C z b n

1�2 1.27(2) 2.54(8) 0.46(3) 1.2(1)
1 1.57(3) 1.58(10) 0.32(3) 1.5(2)

3�2 1.60(3) 1.55(10) · · · · · ·
2 1.69(7) 1.31(20) · · · · · ·

` 1.791 67 · · · 0.138 89 1.333 33
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FIG. 4. Scaling plot of Ss�L, T , p� at p � pcl for (a) S � 1�2
and 1, and for (b) S � 3�2 and 2.

of view, it has been revealed that the present model con-
tains quite rich physics; the critical exponents vary depend-
ing on S. We have introduced a scaling form with two
nonclassical exponents, a and z, which consistently ex-
plains the behavior of the simulation data together with
the exponents D and n of the classical percolation transi-
tion. To our best knowledge, this is the first time that such
an S-dependent quantum critical behavior is discovered.

Most of the numerical calculations for the present work
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