249 research outputs found

    Pharmacological Modulation of Three Modalities of CA1 Hippocampal Long-Term Potentiation in the Ts65Dn Mouse Model of Down Syndrome

    Get PDF
    The Ts65Dn mouse is the most studied animal model of Down syndrome. Past research has shown a significant reduction in CA1 hippocampal long-term potentiation (LTP) induced by theta-burst stimulation (TBS), but not in LTP induced by high-frequency stimulation (HFS), in slices from Ts65Dn mice compared with euploid mouse-derived slices. Additionally, therapeutically relevant doses of the drug memantine were shown to rescue learning and memory deficits in Ts65Dn mice. Here, we observed that 1 mu M memantine had no detectable effect on HFS-induced LTP in either Ts65Dn- or control-derived slices, but it rescued TBS-induced LTP in Ts65Dn-derived slices to control euploid levels. Then, we assessed LTP induced by four HFS (4xHFS) and found that this form of LTP was significantly depressed in Ts65Dn slices when compared with LTP in euploid control slices. Memantine, however, did not rescue this phenotype. Because 4xHFS-induced LTP had not yet been characterized in Ts65Dn mice, we also investigated the effects of picrotoxin, amyloid beta oligomers, and soluble recombinant human prion protein (rPrP) on this form of LTP. Whereas >= 10 mu M picrotoxin increased LTP to control levels, it also caused seizure-like oscillations. Neither amyloid beta oligomers nor rPrP had any effect on 4xHFS-induced LTP in Ts65Dn-derived slices.Alana USA Foundation [124124]Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Awakening AngelsNIH [NS083687]Case Western Reserve Univ, Dept Pediat, Div Pediat Neurol, Cleveland, OH 44106 USAUniv Fed Sao Paulo, Cardiol, Postgrad Program Med, BR-04024002 Sao Paulo, SP, BrazilCase Western Reserve Univ, Dept Physiol & Biophys, Cleveland, OH 44106 USACase Western Reserve Univ, Dept Psychiat, Cleveland, OH 44106 USAUniv Fed Sao Paulo, Cardiol, Postgrad Program Med, BR-04024002 Sao Paulo, SP, BrazilCAPES: NS083687Web of Scienc

    Two-Dimensional Infrared Spectroscopy of Antiparallel β-Sheet Secondary Structure

    Get PDF
    We investigate the sensitivity of femtosecond Fourier transform two-dimensional infrared spectroscopy to protein secondary structure with a study of antiparallel β-sheets. The results show that 2D IR spectroscopy is more sensitive to structural differences between proteins than traditional infrared spectroscopy, providing an observable that allows comparison to quantitative models of protein vibrational spectroscopy. 2D IR correlation spectra of the amide I region of poly-L-lysine, concanavalin A, ribonuclease A, and lysozyme show cross-peaks between the IR-active transitions that are characteristic of amide I couplings for polypeptides in antiparallel hydrogen-bonding registry. For poly-L-lysine, the 2D IR spectrum contains the eight-peak structure expected for two dominant vibrations of an extended, ordered antiparallel β-sheet. In the proteins with antiparallel β-sheets, interference effects between the diagonal and cross-peaks arising from the sheets, combined with diagonally elongated resonances from additional amide transitions, lead to a characteristic “Z”-shaped pattern for the amide I region in the 2D IR spectrum. We discuss in detail how the number of strands in the sheet, the local configurational disorder in the sheet, the delocalization of the vibrational excitation, and the angle between transition dipole moments affect the position, splitting, amplitude, and line shape of the cross-peaks and diagonal peaks.

    Prion protein interaction with soil humic substances: environmental implications

    Get PDF
    Transmissible spongiform encephalopathies (TSE) are fatal neurodegenerative disorders caused by prions. Animal TSE include scrapie in sheep and goats, and chronic wasting disease (CWD) in cervids. Effective management of scrapie in many parts of the world, and of CWD in North American deer population is complicated by the persistence of prions in the environment. After shedding from diseased animals, prions persist in soil, withstanding biotic and abiotic degradation. As soil is a complex, multi-component system of both mineral and organic components, it is important to understand which soil compounds may interact with prions and thus contribute to disease transmission. Several studies have investigated the role of different soil minerals in prion adsorption and infectivity; we focused our attention on the interaction of soil organic components, the humic substances (HS), with recombinant prion protein (recPrP) material. We evaluated the kinetics of recPrP adsorption, providing a structural and biochemical characterization of chemical adducts using different experimental approaches. Here we show that HS act as potent anti-prion agents in prion infected neuronal cells and in the amyloid seeding assays: HS adsorb both recPrP and prions, thus sequestering them from the prion replication process. We interpreted our findings as highly relevant from an environmental point of view, as the adsorption of prions in HS may affect their availability and consequently hinder the environmental transmission of prion diseases in ruminants

    Modulation of protein structure by the lipid environment

    No full text
    NRC publication: Ye

    Mechanism of stabilization of Bacillus circulans xylanase upon the introduction of disulfide bonds

    No full text
    The introduction of disulfide bonds has been used as a strategy to enhance the stability of Bacillus circulans xylanase. The transition temperature of the S100C/N148C (DS1), V98C/A152C (DS2), and A1GC/G187,C188 (cXl) in comparison to the wild type was increased by 5.0, 4.1 and 3.8 \ub0C, respectively. Interestingly, a combination of two disulfide bonds of DS1 and cXl (cDS1, circular disulfide 1) led to a 12 \ub0C increase in the transition temperature. Importantly, an increase in the melting point and \u394\u394G values of the cDS1 mutant was cooperative. These results suggest that the mechanism of stabilization by disulfide bonds under irreversible denaturation condition is achieved through: (1) a change in the rate-limiting step on the denaturation pathway; (2) destabilizing the unfolded state without affecting the relative rate constants on the denaturation pathway (like cXl mutant); and (3) or combination of the two (cDS1 mutant).NRC publication: Ye

    pH-dependent structural transitions of Alzheimer amyloid peptides.

    Get PDF
    To understand the molecular interactions leading to the assembly of beta/44 protein into the hallmark fibrils of Alzheimer's disease (AD), we have examined the ability of synthetic peptides that correspond to the beta/A4 extracellular sequence to form fibrils over the range of pH 3-10. Peptides included the sequences 1-28, 19-28, 17-28, 15-28, 13-28, 11-28, and 9-28 of beta/A4. The model fibrils were compared with isolated amyloid with respect to morphology, conformation, tinctorial properties, and stability under denaturing conditions. Electron microscopy, Fourier-transform infrared (FT-IR) spectroscopy, and x-ray diffraction revealed that the ionization states of the amino acid sidechains appeared to be a crucial feature in fibril formation. This was reflected by the ability of several peptides to undergo fibril assembly and disassembly as a function of pH. Comparisons between different beta/A4 sequences demonstrated that the fibrillar structure representative of AD amyloid was dependent upon electrostatic interactions, likely involving His-13 and Asp-23, and hydrophobic interactions between uncharged sidechains contained within residues 17-21. The results also indicated an exclusively beta-sheet conformation for the synthetic (and possibly AD fibrils) in contrast to certain other (e.g., systemic) amyloids
    • …
    corecore