347 research outputs found

    Impact of heat treatment on size, structure, and bioactivity of elemental selenium nanoparticles

    Get PDF
    Jinsong Zhang1, Ethan W Taylor2, Xiaochun Wan1, Dungeng Peng31School of Tea and Food Science, Anhui Agricultural University, Anhui, People's Republic of China; 2Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, 3Department of Biochemistry, Vanderbilt University, Nashville, TN, USABackground: Elemental selenium nanoparticles have emerged as a novel selenium source with the advantage of reduced risk of selenium toxicity. The present work investigated whether heat treatment affects the size, structure, and bioactivity of selenium nanoparticles.Methods and results: After a one-hour incubation of solution containing 80 nm selenium particles in a 90°C water bath, the nanoparticles aggregated into larger 110 nm particles and nanorods (290 nm × 70 nm), leading to significantly reduced bioavailability and phase II enzyme induction in selenium-deficient mice. When a solution containing 40 nm selenium nanoparticles was treated under the same conditions, the nanoparticles aggregated into larger 72 nm particles but did not transform into nanorods, demonstrating that the thermostability of selenium nanoparticles is size-dependent, smaller selenium nanoparticles being more resistant than larger selenium nanoparticles to transformation into nanorods during heat treatment.Conclusion: The present results suggest that temperature and duration of the heat process, as well as the original nanoparticle size, should be carefully selected when a solution containing selenium nanoparticles is added to functional foods.Keywords: nanoparticle, selenium, bioactivity, heat treatmen

    Dielectric Response of Sr Doped CaCu₃Ti₄O₁₂ Ceramics

    Get PDF
    Ca1−xSrxCu3Ti4O12 (x=0, 0.1, and 0.2) ceramics were fabricated and their dielectric properties were investigated. It was found that the dielectric constant significantly decreased with the increase of Sr content at low temperature region (\u3c250 K) and remained almost unchanged at high temperature region (\u3e250 K). Three sets of relaxation peaks were observed in electric modulus plots, which were considered to be associated with grains, domain boundaries, and grain boundaries, respectively. Through the analysis of the heights and calculated activation energies of the relaxation peaks, it is strongly believed that the suppressed dielectric constant is related to the change of domain boundaries with Sr doping. ©2007 American Institute of Physic

    Efficient inverted polymer solar cells

    Get PDF
    We investigate the effect of interfacial buffer layers—vanadium oxide (V2O5) and cesium carbonate (Cs2CO3)—on the performance of polymer solar cells based on regioregular poly-(3-hexylthiophene) and [6,6]-phenyl C60 butyric acid methyl ester blend. The polarity of solar cells can be controlled by the relative positions of these two interfacial layers. Efficient inverted polymer solar cells were fabricated with the structure of indium tin oxide (ITO)/Cs2CO3/polymer blend/vanadium oxide (V2O5)/aluminum (Al). Short-circuit current of 8.42 mA/cm2, open-circuit voltage of 0.56 V, and power conversion efficiency of 2.25% under a AM1.5G 130 mW/cm2 condition were achieved. The interfacial layers were also used to fabricate polymer solar cells using ITO and a thin gold (Au) layer as the transparent electrodes. The thickness of V2O5 layer (10 nm) makes it an effective protective layer for the active layer so that ITO can be used for both the electrodes, enabling highly efficient transparent polymer solar cells (i.e., polymer solar cells with transparent electrodes). Application of this structure for multiple-stacking polymer solar cells is also discussed

    Efficient inverted polymer solar cells

    Get PDF
    We investigate the effect of interfacial buffer layers—vanadium oxide (V2O5) and cesium carbonate (Cs2CO3)—on the performance of polymer solar cells based on regioregular poly-(3-hexylthiophene) and [6,6]-phenyl C60 butyric acid methyl ester blend. The polarity of solar cells can be controlled by the relative positions of these two interfacial layers. Efficient inverted polymer solar cells were fabricated with the structure of indium tin oxide (ITO)/Cs2CO3/polymer blend/vanadium oxide (V2O5)/aluminum (Al). Short-circuit current of 8.42 mA/cm2, open-circuit voltage of 0.56 V, and power conversion efficiency of 2.25% under a AM1.5G 130 mW/cm2 condition were achieved. The interfacial layers were also used to fabricate polymer solar cells using ITO and a thin gold (Au) layer as the transparent electrodes. The thickness of V2O5 layer (10 nm) makes it an effective protective layer for the active layer so that ITO can be used for both the electrodes, enabling highly efficient transparent polymer solar cells (i.e., polymer solar cells with transparent electrodes). Application of this structure for multiple-stacking polymer solar cells is also discussed

    Designed Arginine-Rich RNA-Binding Peptides with Picomolar Affinity

    Get PDF
    Arginine-rich peptide motifs (ARMs) capable of binding unique RNA structures play critical roles in transcription, translation, RNA trafficking, and RNA packaging. Bacteriophage ARMs necessary for transcription antitermination bind to distinct boxB RNA hairpin sequences with a characteristic induced α-helical structure. Characterization of ARMs from lambdoid phages reveals that the dissociation constant of the P22 bacteriophage model−antitermination complex (P22_(N21)−P22boxB) is 200 ± 56 pM in free solution at physiologic concentrations of monovalent cation, significantly stronger than previously determined by gel mobility shift and polyacrylamide gel coelectophoresis, and 2 orders of magnitude stronger than the tightest known native ARM−RNA interaction at physiological salt. Here, we use a reciprocal design approach to enhance the binding affinity of two separate α-helical ARM−RNA interactions; one derived from the native λ phage antitermination complex and a second isolated using mRNA display selection experiments targeting boxB RNA

    Acquiring and modeling of Si solar cell transient response to pulsed X-ray

    Get PDF
    We report on the acquisition and modeling of the transient response of a commercial silicon (Si) solar cell using a benchtop pulsed X-ray source. The solar-cell transient output to the X-ray pulses was acquired under the dark and steady-state light illumination to mimic the practical operation of a solar cell under different light illumination levels. A solar-cell circuit model was created to develop a fundamental understanding of the transient current/voltage response of solar cell at read-out circuit level. The model was validated by a good agreement between the simulation and experimental results. It was found that the solar-cell resistance ( R ) and capacitance ( C ) depend on the light illumination, and the resulting variation in RC time constant significantly affects the solar-cell transient response. Thus, the solar cell produced different transient signals under different illumination intensities in response to the same X-ray pulse. The experimental data acquired in this work proves the feasibility of using solar panels for prompt detection of nuclear detonations, which also builds a practical mode of X-ray detection using a low-cost self-powered detector
    • 

    corecore