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Dielectric response of Sr doped CaCu3Ti4O12 ceramics
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210093, People’s Republic of China
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Ca1−xSrxCu3Ti4O12 �x=0, 0.1, and 0.2� ceramics were fabricated and their dielectric properties were
investigated. It was found that the dielectric constant significantly decreased with the increase of Sr
content at low temperature region ��250 K� and remained almost unchanged at high temperature
region ��250 K�. Three sets of relaxation peaks were observed in electric modulus plots, which
were considered to be associated with grains, domain boundaries, and grain boundaries,
respectively. Through the analysis of the heights and calculated activation energies of the relaxation
peaks, it is strongly believed that the suppressed dielectric constant is related to the change of
domain boundaries with Sr doping. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2713167�

The perovskite-related structure of CaCu3Ti4O12
�CCTO� was reported to have a giant dielectric constant
��104� in ceramics, single crystals, and thin films, despite
the fact that the dielectric constant calculated from the polar-
izabilities of the constituent atoms using the Clausius-
Mossotti relation is only �50.1–6 This high dielectric con-
stant shows weak temperature dependence over the wide
temperature range of 100–300 K but drops abruptly to �100
below 100 K with neither a phase transition nor accompany-
ing long-range crystal structure change. The decrease in di-
electric constant demonstrates a typical Debye-type relax-
ation behavior.

The notable physical features in CCTO are scientifically
interesting and have attracted extensive investigations re-
garding the origin of the enormously large dielectric permit-
tivity. Typical explanations for the observed permittivity re-
sponse include local dipole moments that are associated with
off-center displacement of Ti ions,1 relaxorlike dynamical
slowing of dipolar fluctuations in nanosize domains,2 collec-
tive ordering of local dipole moments,3 spatial inhomogene-
ity of local dielectric response,4 electrode depletion effects,5

and grain boundary �internal� barrier layer capacitance
�IBLC� mechanisms.6 Today, the origin of the giant dielectric
response is still ambiguous, and the IBLC explanation asso-
ciated with an extrinsic mechanism seems mostly likely,
since no noticeable evidence has been found for either intrin-
sic lattice or electronic-based mechanisms from first prin-
ciples calculations.7

In the IBLC mechanism, the insulating grain boundary
layers between semiconducting grains act as electrostatic
barrier layers blocking the current flow.8 In this model, the
effective permittivity can be estimated by �eff��gb�tg / tgb�,
where �gb is the relative permittivity of the grain boundary
phase, tg is the average grain size, and tgb is the average
thickness of the grain boundaries. However, a contradictive

problem related to this mechanism is that CCTO single crys-
tals also possess large permittivity without insulating grain
boundaries. This fact strongly indicates that other kinds of
barriers to conductivity exist within the crystals in the form
of defects. Some researchers consider twin boundaries as a
type of insulating barrier layer inside the single crystals
�CCTO crystals are twinned on a microscopic level with
essentially the same density of twins in different
orientations1,9�. However, Wu et al.10 declared that they did
not find the presence of twin domains by transmission elec-
tron microscopy �TEM� in single crystals. Instead, a high
density of dislocations as well as regions with cation disorder
and planar defects was observed, which serve as internal
barrier layers.

Most recently, domain boundaries were proposed as an-
other kind of insulating barrier layer in these materials. Do-
mains are easily developed in large grains and the insulating
character of the domain boundaries was attributed to the or-
dered arrangement of dislocations �in contrast, the insulating
character of the grain boundaries was attributed to the seg-
regation of Cu ions�.11 Chung’s12 observation by TEM sug-
gests that grains consist of thick domain boundaries and do-
mains, whose zone axes are tilted away from each other at an
angle of �1°. Such a slight misfit between domains may
cause lattice distortion, resulting in the presence of lattice
strain and misfit dislocations. Whangbo and Subramanian13

even proposed a structural model of planar defects, resulting
from twinning parallel to the �110�, �010�, and �001� planes,
to explain the probable origin of domain boundaries. By per-
forming impedance analysis, Shao et al.14 detected the elec-
trical response associated with insulating domain boundaries
in addition to that associated with grains and grain bound-
aries. However, as supplementary insulating barrier layers in
CCTO, investigations of domain boundaries are only begin-
ning; more experimental observations addressing their pres-
ence and their contribution to the high permittivity are ur-
gently needed.

In this letter, three sets of electrical responses were ob-
served in electric modulus plots as a function of temperature.
By substituting Sr onto the Ca site of CCTO, the peak
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heights and activation energies of the electrical responses
were correspondingly changed, and a significant suppression
of the dielectric constant in low temperature region occurred.
A possible reason for this behavior is briefly discussed based
on the experimental observations.

Ca1−xSrxCu3Ti4O12 �x=0, 0.1, and 0.2� ceramics were
fabricated by calcination of high purity CaCO3, SrCO3,
CuO, and TiO2 at 800 °C for 12 h followed by sintering in
air at 1050 °C for 17 h using a conventional solid state re-
action method. The dielectric properties of the ceramics were
measured using an HP4194A impedance analyzer in the fre-
quency range from 100 Hz to 1 MHz and over the tempera-
ture range from 100 to 600 K.

Figure 1 shows the dielectric constant of CCTO ceram-

ics with different Sr doping contents as a function of tem-
perature at various frequencies. Two easily distinguishable
regions may be identified by the dotted line that is indicated
at �250 K. The values of dielectric constant in the low tem-
perature region were significantly depressed by Sr doping
while those in the high temperature region remained almost
unchanged. The electrical responses in the high temperature
region may be attributed to the migration of excited electrical
particles at high temperatures. A detailed description of the
associated conduction behavior goes beyond the theme of
this letter. Rather, attention is focused on the greatly sup-
pressed dielectric constant in the low temperature region
from �10 000 at x=0 to �1000 at x=0.1 and �200 at x
=0.2. Further increases of doping content up to x=1.0 only
result in slight additional decreases in dielectric constant to
�180.15

Figures 2�a�–2�c� depict the temperature dependence of
the dielectric loss of CCTO ceramics with different Sr con-
tents. Clearly, two sets of relaxation peaks may be observed
in all of the samples. It may also be noted that the peak
temperatures shift to higher values with an increase of the
measurement frequency. Additionally, with increasing Sr
content, peak heights of the first set gradually decrease while
those of the second set increase. By using an Arrhenius ex-
pression,

f = f0 exp�− Ea/kBT� ,

where Ea is the activation energy and kB is the Boltzmann
parameter, activation energies for the first and second sets of
relaxation processes were calculated to be 49.6, 120.9, and
131.3 meV and 0.44, 0.53, and 0.53 eV for x=0, 0.1, and
0.2, respectively. The obtained value of 49.6 meV is very
close to the previously reported value for CCTO single crys-
tals �54 meV in Ref. 2�.

In order to explore the observed electrical responses in
Sr doped CCTO, dielectric data were replotted in electric

FIG. 1. �Color online� Dielectric constant as a function of temperature for
various frequencies of 102, 102.5, 103, 103.5, 104, 104.5, 105, 105.5, and 106 Hz
for Ca1−xSrxCu3Ti4O12 �x=0, 0.1, and 0.2�, respectively.

FIG. 2. �Color online� Dielectric loss ��a�–�c�� and electric modulus ��d�–�f�� as a function of temperature for various frequencies of 102, 102.5, 103, 103.5, 104,
104.5, 105, 105.5, and 106 Hz for Ca1−xSrxCu3Ti4O12 �x=0, 0.1, and 0.2�, respectively. The upper inset is the enlarged part of dashed rectangle area. The bottom
inset shows the peak heights vs Sr content.
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modulus formalism, as shown in Figs. 2�d�–2�f�. The upper
inset shows the enlarged part of dashed rectangle area in Fig.
2�d�. Apparently, three sets of electrical responses �I, II, and
III� may be clarified as indicated by the dashed line ellipses
in Fig. 2�e�. The bottom inset shows the variation of their
peak heights with Sr contents at a measurement frequency of
1 kHz. The peak heights of sets I, II, and III are slightly
decreased, significantly increased, and almost unchanged, re-
spectively, with increasing Sr content. Moreover, the entire
peak temperatures shift to higher values with increasing fre-
quency and remain almost unchanged with x, except for a
slight increase for the set I peaks with initial Sr doping.

Figure 3 illustrates the Arrhenius plots for all thermally
excited relaxation processes in CCTO with various Sr con-
tents. Activation energies obtained from the slopes of linear
fits were determined to be 29.4, 120.4, and 131.1 meV for
set I, 0.42, 0.59, and 0.55 eV for set II, and 0.51, 0.62, and
0.66 eV for set III, with x=0, 0.1, and 0.2, respectively. It
may be noticed that Sr doping in CCTO results in a signifi-
cant increase in activation energy values for set I and a rela-
tively slight increase in activation energy values for sets II
and III. This tendency of activation energies becomes more
evident from the normalized activation energy plot, as shown
in the inset of Fig. 3.

Since domain boundaries and grain boundaries were
suggested �and observed� to be two kinds of insulating layers
inside CCTO, we feel it is reasonable that the three sets of
relaxation peaks be attributed to grains, domain boundaries,
and grain boundaries, respectively. In fact, our recent
investigations16 indicate that the resistance and capacitance
associated with set II remain constant while those associated
with set III gradually decrease with applied dc voltage. The
different behavior makes it easy to distinguish the electrical
response of grain boundaries from that of domain boundaries
according to the published results.17 Reconsidering the ex-
perimental results, it may be noticed that with increasing Sr
doping content, as the dielectric constant significantly de-
creased, the peak heights of set II significantly increased, the
peak heights of set I slightly decreased, and the peak heights
of set III remained essentially unchanged. Peak temperatures
remain unchanged with x except for the slight shift with
initial Sr doping. Viewed collectively, these results provide

clues that the significantly suppressed dielectric constant �in
the low temperature region� by Sr doping is associated with
changes in domain and domain boundary character. Effects
of grain boundaries are minimal. This interpretation is pur-
sued further below.

In CCTO, the TiO6 octahedra are tilted to form a square
planar coordination for Cu.1,2 The framework is very rigid
and the space for the A site cation is highly restricted. Based
on ionic radii,18 the expected Ca–O distance is 2.72 Å, while
the observed distance is 2.61 Å.1 This means that Ca ions on
the A site are under compression. The ionic radius of Sr is
much larger than that of Ca, and the Sr–O distance is ex-
pected to be 2.82 Å. In contrast, the observed Sr–O distance
is 2.64 Å. Due to the larger ionic radius of Sr compared to
Ca, stoichiometric SrCu3Ti4O12 cannot be formed.15 Recent
investigations revealed that the formation of domain bound-
aries in large grain ceramics may be attributed to an orderly
arrangement of dislocations,11 and the slight misfit between
domains may in turn cause lattice distortion, lattice strain,
and misfit dislocations.12 By substituting Sr for Ca �in this
letter, 10% and 20% contents� on the A site of CCTO, the
much larger Sr stretches the Ti–O bonds and affects the tilted
TiO6 octahedra, resulting in a change of domains and domain
boundaries. This explanation is in agreement with our obser-
vations in the electric modulus plot and the calculated acti-
vation energies and indicates that domain boundaries are
sometimes more important than grain boundaries as insulat-
ing layers in defining the high permittivity response observed
for CCTO.
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05-1-0541 and the National Natural Science Foundation of
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FIG. 3. �Color online� Three sets of peak frequencies as a function of tem-
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malized activation energies vs Sr content for the three sets of relaxation
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