5,752 research outputs found

    On the unsteady behavior of turbulence models

    Full text link
    Periodically forced turbulence is used as a test case to evaluate the predictions of two-equation and multiple-scale turbulence models in unsteady flows. The limitations of the two-equation model are shown to originate in the basic assumption of spectral equilibrium. A multiple-scale model based on a picture of stepwise energy cascade overcomes some of these limitations, but the absence of nonlocal interactions proves to lead to poor predictions of the time variation of the dissipation rate. A new multiple-scale model that includes nonlocal interactions is proposed and shown to reproduce the main features of the frequency response correctly

    Origin of Lagrangian Intermittency in Drift-Wave Turbulence

    Full text link
    The Lagrangian velocity statistics of dissipative drift-wave turbulence are investigated. For large values of the adiabaticity (or small collisionality), the probability density function of the Lagrangian acceleration shows exponential tails, as opposed to the stretched exponential or algebraic tails, generally observed for the highly intermittent acceleration of Navier-Stokes turbulence. This exponential distribution is shown to be a robust feature independent of the Reynolds number. For small adiabaticity, algebraic tails are observed, suggesting the strong influence of point-vortex-like dynamics on the acceleration. A causal connection is found between the shape of the probability density function and the autocorrelation of the norm of the acceleration

    Spectral imbalance and the normalized dissipation rate of turbulence

    Full text link
    The normalized turbulent dissipation rate CϵC_\epsilon is studied in decaying and forced turbulence by direct numerical simulations, large-eddy simulations, and closure calculations. A large difference in the values of CϵC_\epsilon is observed for the two types of turbulence. This difference is found at moderate Reynolds number, and it is shown that it persists at high Reynolds number, where the value of CϵC_\epsilon becomes independent of the Reynolds number, but is still not unique. This difference can be explained by the influence of the nonlinear cascade time that introduces a spectral disequilibrium for statistically nonstationary turbulence. Phenomenological analysis yields simple analytical models that satisfactorily reproduce the numerical results. These simple spectral models also reproduce and explain the increase of CϵC_\epsilon at low Reynolds number that is observed in the simulations

    Magnetism and structure of LixCoO2 and comparison to NaxCoO2

    Full text link
    The magnetic properties and structure of LixCoO2 for x between 0.5 and 1.0 are reported. Co4+ is found to be high-spin in LixCoO2 for x between 0.94 and 1.0 and low-spin for x between 0.50 and 0.78. Weak antiferromagnetic coupling is observed, increasing in strength as more Co4+ is introduced. At an x value of about 0.65, the temperature-independent contribution to the magnetic susceptibility and the electronic contribution to the specific heat are largest. Neutron diffraction analysis reveals that the lithium oxide layer expands perpendicular to the basal plane and the Li ions displace from their ideal octahedral sites with decreasing x. A comparison of the structures of the NaxCoO2 and LixCoO2 systems reveals that the CoO2 layer changes substantially with alkali content in the former but is relatively rigid in the latter. Further, the CoO6 octahedra in LixCoO2 are less distorted than those in NaxCoO2. We postulate that these structural differences strongly influence the physical properties in the two systems

    Direct evidence for the magnetic ordering of Nd ions in NdFeAsO by high resolution inelastic neutron scattering

    Full text link
    We investigated the low energy excitations in the parent compound NdFeAsO of the Fe-pnictide superconductor in the μ\mueV range by a back scattering neutron spectrometer. The energy scans on a powder NdFeAsO sample revealed inelastic peaks at E = 1.600 ±0.003μ \pm 0.003 \mueV at T = 0.055 K on both energy gain and energy loss sides. The inelastic peaks move gradually towards lower energy with increasing temperature and finally merge with the elastic peak at about 6 K. We interpret the inelastic peaks to be due to the transition between hyperfine-split nuclear level of the 143^{143}Nd and 145^{145}Nd isotopes with spin I=7/2I = 7/2. The hyperfine field is produced by the ordering of the electronic magnetic moment of Nd at low temperature and thus the present investigation gives direct evidence of the ordering of the Nd magnetic sublattice of NdFeAsO at low temperature

    Iron spin-reorientation transition in NdFeAsO

    Full text link
    The low-temperature magnetic structure of NdFeAsO has been revisited using neutron powder diffraction and symmetry analysis using the Sarah representational analysis program. Four magnetic models with one magnetic variable for each of the Nd and Fe sublattices were tested. The best fit was obtained using a model with Fe moments pointing along the c-direction, and Nd moments along the a-direction. This signals a significant interplay between rare-earth and transition metal magnetism, which results in a spin-reorientation of the Fe sublattice upon ordering of the Nd moments. All models that fit the data well, including collinear models with more than one magnetic variable per sublattice, were found to have an Fe moment of 0.5 BM and a Nd moment of 0.9 BM, demonstrating that the low-temperature Fe moment is not substantially enhanced compared to the spin-density wave (SDW) state.Comment: accepted to J. Phys.: Cond. Ma

    Comparing phenomenological recipes with a microscopic model for the electric amplitude in strangeness photoproduction

    Full text link
    Corrections to the Born approximation in photo-induced strangeness production off a proton are calculated in a semi-realistic microscopic model. The vertex corrections and internal contributions to the amplitude of the γpK+Λ\gamma p \to K^+ \Lambda reaction are included on the one-loop level. Different gauge-invariant phenomenological prescriptions for the modification of the Born contribution via the introduction of form factors and contact terms are discussed. In particular, it is shown that the popular minimal-substitution method of Ohta corresponds to a special limit of the more realistic approach.Comment: 10 pages, 6 figures in the tex

    Inertial range scaling of the scalar flux spectrum in two-dimensional turbulence

    Full text link
    Two-dimensional statistically stationary isotropic turbulence with an imposed uniform scalar gradient is investigated. Dimensional arguments are presented to predict the inertial range scaling of the turbulent scalar flux spectrum in both the inverse cascade range and the enstrophy cascade range for small and unity Schmidt numbers. The scaling predictions are checked by direct numerical simulations and good agreement is observed

    Octet Baryon Magnetic Moments in the Chiral Quark Model with Configuration Mixing

    Get PDF
    The Coleman-Glashow sum-rule for magnetic moments is always fulfilled in the chiral quark model, independently of SU(3) symmetry breaking. This is due to the structure of the wave functions, coming from the non-relativistic quark model. Experimentally, the Coleman-Glashow sum-rule is violated by about ten standard deviations. To overcome this problem, two models of wave functions with configuration mixing are studied. One of these models violates the Coleman-Glashow sum-rule to the right degree and also reproduces the octet baryon magnetic moments rather accurately.Comment: 22 pages, RevTe

    Nd induced Mn spin-reorientation transition in NdMnAsO

    Get PDF
    A combination of synchrotron X-ray, neutron powder diffraction, magnetization, heat capacity and electrical resistivity measurements reveals that NdMnAsO is an antiferromagnetic semiconductor with large Neel temperature (TN = 359(2) K). At room temperature the magnetic propagation vector k = 0 and the Mn moments are directed along the crystallographic c-axis (mMn = 2.41(6) BM). Upon cooling a spin reorientation (SR) transition of the Mn moments into the ab-plane occurs (TSR = 23 K). This coincides with the long range ordering of the Nd moments, which are restricted to the basal plane. The magnetic propagation vector remains k = 0. At base temperature (1.6 K) the fitted moments are mab,Mn = 3.72(1) BM and mab,Nd = 1.94(1) BM. The electrical resistivity is characterized by a broad maximum at 250 K, below which it has a metallic temperature dependence but semiconducting magnitude (rho250K = 50 Ohm cm, residual resistivity ratio = 2), and a slight upturn at the SR transition
    corecore