36,252 research outputs found

    Antimagnetic Rotation Band in Nuclei: A Microscopic Description

    Full text link
    Covariant density functional theory and the tilted axis cranking method are used to investigate antimagnetic rotation (AMR) in nuclei for the first time in a fully self-consistent and microscopic way. The experimental spectrum as well as the B(E2) values of the recently observed AMR band in 105Cd are reproduced very well. This gives a further strong hint that AMR is realized in specific bands in nuclei.Comment: 10 pages, 4 figure

    A Simplified Scheme of Estimation and Cancellation of Companding Noise for Companded Multicarrier Transmission Systems

    Get PDF
    Nonlinear companding transform is an efficient method to reduce the high peak-to-average power ratio (PAPR) of multicarrier transmission systems. However, the introduced companding noise greatly degrades the bit-error-rate (BER) performance of the companded multicarrier systems. In this paper, a simplified but effective scheme of estimation and cancellation of companding noise for the companded multicarrier transmission system is proposed. By expressing the companded signals as the summation of original signals added with a companding noise component, and subtracting this estimated companding noise from the received signals, the BER performance of the overall system can be significantly improved. Simulation results well confirm the great advantages of the proposed scheme over other conventional decompanding or no decompanding schemes under various situations

    Generalized μτ\mu-\tau reflection symmetry and leptonic CP violation

    Get PDF
    We propose a generalized μτ\mu-\tau reflection symmetry to constrain the lepton flavor mixing parameters. We obtain a new correlation between the atmospheric mixing angle θ23\theta_{23} and the "Dirac" CP violation phase δCP\delta_{\rm CP}. Only in a specific limit our proposed CP transformation reduces to standard μτ\mu-\tau reflection, for which θ23\theta_{23} and δCP\delta_{CP} are both maximal. The "Majorana" phases are predicted to lie at their CP-conserving values with important implications for the neutrinoless double beta decay rates. We also study the phenomenological implications of our scheme for present and future neutrino oscillation experiments including T2K, NOν\nuA and DUNE.Comment: 14 pages, 9 figures, latex, Final version to appear in Physics Letters

    SU(2)-in-SU(1,1) Nested Interferometer for Highly Sensitive, Loss-Tolerant Quantum Metrology

    Full text link
    We present experimental and theoretical results on a new interferometer topology that nests a SU(2) interferometer, e.g., a Mach-Zehnder or Michelson interferometer, inside a SU(1,1) interferometer, i.e., a Mach-Zehnder interferometer with parametric amplifiers in place of beam splitters. This SU(2)-in-SU(1,1) nested interferometer (SISNI) simultaneously achieves high signal-to-noise ratio (SNR), sensitivity beyond the standard quantum limit (SQL) and tolerance to photon losses external to the interferometer, e.g., in detectors. We implement a SISNI using parametric amplification by four-wave mixing (FWM) in Rb vapor and a laser-fed Mach-Zehnder SU(2) interferometer. We observe path-length sensitivity with SNR 2.2 dB beyond the SQL at power levels (and thus SNR) 2 orders of magnitude beyond those of previous loss-tolerant interferometers. We find experimentally the optimal FWM gains and find agreement with a minimal quantum noise model for the FWM process. The results suggest ways to boost the in-practice sensitivity of high-power interferometers, e.g., gravitational wave interferometers, and may enable high-sensitivity, quantum-enhanced interferometry at wavelengths for which efficient detectors are not available.Comment: 6 pages + 4 of supplemental material, 5 figure
    corecore