198 research outputs found

    Numerical and experimental studies of the carbon etching in EUV-induced plasma

    Get PDF
    We have used a combination of numerical modeling and experiments to study carbon etching in the presence of a hydrogen plasma. We model the evolution of a low density EUV-induced plasma during and after the EUV pulse to obtain the energy resolved ion fluxes from the plasma to the surface. By relating the computed ion fluxes to the experimentally observed etching rate at various pressures and ion energies, we show that at low pressure and energy, carbon etching is due to chemical sputtering, while at high pressure and energy a reactive ion etching process is likely to dominate

    Plasma probe characteristics in low density hydrogen pulsed plasmas

    Get PDF
    Probe theories are only applicable in the regime where the probe's perturbation of the plasma can be neglected. However, it is not always possible to know, a priori, that a particular probe theory can be successfully applied, especially in low density plasmas. This is especially difficult in the case of transient, low density plasmas. Here, we applied probe diagnostics in combination with a 2D particle-in-cell model, to an experiment with a pulsed low density hydrogen plasma. The calculations took into account the full chamber geometry, including the plasma probe as an electrode in the chamber. It was found that the simulations reproduce the time evolution of the probe IV characteristics with good accuracy. The disagreement between the simulated and probe measured plasma density is attributed to the limited applicability of probe theory to measurements of low density pulsed plasmas. Indeed, in the case studied here, probe measurements would lead to a large overestimate of the plasma density. In contrast, the simulations of the plasma evolution and the probe characteristics do not suffer from such strict applicability limits. These studies show that probe theory cannot be justified through probe measurements

    Dissociative recombination and electron-impact de-excitation in CH photon emission under ITER divertor-relevant plasma conditions

    Get PDF
    For understanding carbon erosion and redeposition in nuclear fusion devices, it is important to understand the transport and chemical break-up of hydrocarbon molecules in edge plasmas, often diagnosed by emission of the CH A^2\Delta - X^2\Pi Ger\"o band around 430 nm. The CH A-level can be excited either by electron-impact or by dissociative recombination (D.R.) of hydrocarbon ions. These processes were included in the 3D Monte Carlo impurity transport code ERO. A series of methane injection experiments was performed in the high-density, low-temperature linear plasma generator Pilot-PSI, and simulated emission intensity profiles were benchmarked against these experiments. It was confirmed that excitation by D.R. dominates at T_e < 1.5 eV. The results indicate that the fraction of D.R. events that lead to a CH radical in the A-level and consequent photon emission is at least 10%. Additionally, quenching of the excited CH radicals by electron impact de-excitation was included in the modeling. This quenching is shown to be significant: depending on the electron density, it reduces the effective CH emission by a factor of 1.4 at n_e=1.3*10^20 m^-3, to 2.8 at n_e=9.3*10^20 m^-3. Its inclusion significantly improved agreement between experiment and modeling

    How to make large, void free dust clusters in dusty plasma under microgravity

    Full text link
    Collections of micrometer sized solid particles immersed in plamsa are used to mimic many systems from solid state and fluid physics, due to their strong electrostatic interaction, their large inertia, and the fact that they are large enough to be visualized with ordinary optics. On Earth, gravity restricts the so called dusty plasma systems to thin, two-dimensional layers, unless special experimental geometries are used, involving heated or cooled electrons, and/or the use of dielectric materials.In micro-gravity experiments, the formation of a dust-free void breaks the isotropy of three-dimensional dusty plasma systems. In order to do real three-dimensional experiments, this void has somehow to be closed. In this paper, we use a fully self-consistent fluid model to study the closure of a void in a micro-gravity experiment, by lowering the driving potential. The analysis goes beyond the simple description of the virtual void, which describes the formation of a void without taking the dust into account. We show that self-organization plays an important role in void formation and void closure, which also allows a reversed scheme, where a discharge is run at low driving potentials and small batches of dust are added. No hysteresis is found this way. Finally, we compare our results to recent experiments and find good agreement,but only when we do not take charge-exchange collisions into account

    The isentropic exponent in plasmas

    Full text link

    Experimental and computational characterization of a modified GEC cell for dusty plasma experiments

    Full text link
    A self-consistent fluid model developed for simulations of micro- gravity dusty plasma experiments has for the first time been used to model asymmetric dusty plasma experiments in a modified GEC reference cell with gravity. The numerical results are directly compared with experimental data and the experimentally determined dependence of global discharge parameters on the applied driving potential and neutral gas pressure is found to be well matched by the model. The local profiles important for dust particle transport are studied and compared with experimentally determined profiles. The radial forces in the midplane are presented for the different discharge settings. The differences between the results obtained in the modified GEC cell and the results first reported for the original GEC reference cell are pointed out

    Dynamics of lane formation in driven binary complex plasmas

    Full text link
    The dynamical onset of lane formation is studied in experiments with binary complex plasmas under microgravity conditions. Small microparticles are driven and penetrate into a cloud of big particles, revealing a strong tendency towards lane formation. The observed time-resolved lane formation process is in good agreement with computer simulations of a binary Yukawa model with Langevin dynamics. The laning is quantified in terms of the anisotropic scaling index, leading to a universal order parameter for driven systems.Comment: 4 pages, 3 figures, movies available at http://www.mpe.mpg.de/pke/lane-formation

    Residual gas entering high density hydrogen plasma: rarefaction due to rapid heating

    Get PDF
    The interaction of background molecular hydrogen with magnetized (0.4&nbsp;T) high density (1–5&nbsp;×&nbsp;10 20 &nbsp;m −3 ) low temperature (∼3&nbsp;eV) hydrogen plasma was inferred from the Fulcher band emission in the linear plasma generator Pilot-PSI. In the plasma center, vibrational temperatures reached 1&nbsp;eV. Rotational temperatures obtained from the Q( v&nbsp;=&nbsp;1) branch were systematically ∼0.1&nbsp;eV lower than the Q( v&nbsp;=&nbsp;0) branch temperatures, which were in the range of 0.4–0.8&nbsp;eV, typically 60% of the translational temperature (determined from the width of the same spectral lines). The latter is attributed to preferential excitation of translational degrees of freedom in collisions with ions on the timescale of their in-plasma residence time. Doppler shifts revealed co-rotation of the molecules with the plasma at an angular velocity an order of magnitude lower, confirming that the Fulcher emission connects to background molecules. A simple model estimated a factor of 90 rarefaction of the molecular density at the center of the plasma column compared to the residual gas density. Temperature and density information was combined to conclude that ion-conversion molecular assisted recombination dominates plasma recombination at a rate of 1&nbsp;×&nbsp;10 −15&nbsp;m 3&nbsp;s −1 . The observations illustrate the general significance of rapid molecule heating in high density hydrogen plasma for estimating molecular processes and how this affects Fulcher spectroscopy.</p
    • …
    corecore