193 research outputs found

    Roto++: Accelerating professional rotoscoping using shape manifolds

    Get PDF
    Rotoscoping (cutting out different characters/objects/layers in raw video footage) is a ubiquitous task in modern post-production and represents a significant investment in person-hours. In this work, we study the particular task of professional rotoscoping for high-end, live action movies and propose a new framework that works with roto-artists to accelerate the workflow and improve their productivity. Working with the existing keyframing paradigm, our first contribution is the development of a shape model that is updated as artists add successive keyframes. This model is used to improve the output of traditional interpolation and tracking techniques, reducing the number of keyframes that need to be specified by the artist. Our second contribution is to use the same shape model to provide a new interactive tool that allows an artist to reduce the time spent editing each keyframe. The more keyframes that are edited, the better the interactive tool becomes, accelerating the process and making the artist more efficient without compromising their control. Finally, we also provide a new, professionally rotoscoped dataset that enables truly representative, real-world evaluation of rotoscoping methods. We used this dataset to perform a number of experiments, including an expert study with professional roto-artists, to show, quantitatively, the advantages of our approach

    Hydroxyapatite based hybrid dental materials with controlled porosity and improved tribological and mechanical properties

    Get PDF
    Hybrid dental materials were designed with controlled porosity and improved tribological and mechanical properties. These materials are based on hydroxyapatite (HAp) and reinforced with two different types of ceramic particles, alumina and silica, to support the high stresses and the continuous scratching produced during mastication. The agglutinant phase is an alkyd polyester polyurethane with high abrasion resistance that adheres well to surfaces containing OH groups. Porosity of the materials was controlled using sodium acetate powder of specified particle size as a pore former, thereby providing the materials with a morphology that resembles real teeth. The composition, structure and morphology were evaluated through several analytical techniques; results of scanning electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, X-ray diffraction, induced coupled plasma optical emission spectroscopy and densitometry are reported. The ceramic powders incorporated (HAp, alumina and silica) were a combination of micro-and nanoscale particles; this use of different sized particles improved the packing and consequently the mechanical and tribological properties of the dental materials. Tribological features are explained from results of microscratch testing and abrasion resistance. The elastic modulus from mechanical testing is compared for the entire set of hybrid dental composites developed

    Statistical Mechanics of Glass Formation in Molecular Liquids with OTP as an Example

    Full text link
    We extend our statistical mechanical theory of the glass transition from examples consisting of point particles to molecular liquids with internal degrees of freedom. As before, the fundamental assertion is that super-cooled liquids are ergodic, although becoming very viscous at lower temperatures, and are therefore describable in principle by statistical mechanics. The theory is based on analyzing the local neighborhoods of each molecule, and a statistical mechanical weight is assigned to every possible local organization. This results in an approximate theory that is in very good agreement with simulations regarding both thermodynamical and dynamical properties

    Thermally Responsive Amphiphilic Conetworks and Gels Based on Poly(N‑isopropylacrylamide) and Polyisobutylene

    Get PDF
    Novel amphiphilic conetworks (APCN) consisting of thermoresponsive poly(N-isoproplyacrylamide) (PNiPAAm) cross-linked by hydrophobic methacrylate-telechelic polyisobutylene (MA-PIB-MA) were successfully synthesized in a broad composition range. The resulting PNiPAAm-l-PIB conetworks (“l” stands for “linked by”) were obtained by radical copolymerization of NiPAAm with MA-PIB-MA in tetrahydrofuran, a cosolvent for all the components. Low amounts of extractables substantiated efficient network formation. The composition dependent two glass transition temperatures (Tg) by DSC analysis indicate microphase separation of the cross-linked components without mixed phases. It was found that the PNiPAAm-l-PIB conetworks are uniformly swellable in both water and n-hexane; i.e., these new materials behave either as hydrogels or as hydrophobic gels in aqueous or nonpolar media, respectively. The uniform swelling in both polar and nonpolar solutes indicates cocontinuous (bicontinuous) phase morphology. The equilibrium swelling degrees (R) depend on composition, that is, the higher the PIB content, the lower the R in water and the higher in n-hexane. The PNiPAAm phase keeps its thermoresponsive behavior in the conetworks as shown by significant decrease of the swelling degree in water between 20 and 35 °C. The lower critical solubility temperature (LCST) values determined by DSC are found to decrease from 34.1 °C (for the pure PNiPAAm homopolymer) to the range of 25–28 °C in the conetworks, and the extent of the LCST decrease is proportional with the PIB content. Deswelling-swelling, i.e., heating–cooling, cycle indicates insignificant hysteresis in these new thermoresponsive materials. This indicates that PNiPAAm-l-PIB conetworks with predetermined and thermoresponsive swelling behavior can be designed and utilized in several advanced applications on the basis of results obtained in the course of this study

    Omega-3 polyunsaturated fatty acid supplementation versus placebo on vascular health, glycaemic control, and metabolic parameters in people with type 1 diabetes: a randomised controlled preliminary trial

    Get PDF
    Background: The role of omega-3 polyunsaturated fatty acids (n-3PUFA), and the potential impact of n-3PUFA supplementation, in the treatment and management of type 1 diabetes (T1D) remains unclear and controversial. Therefore, this study aimed to examine the efficacy of daily high-dose-bolus n-3PUFA supplementation on vascular health, glycaemic control, and metabolic parameters in subjects with T1D. Methods: Twenty-seven adults with T1D were recruited to a 6-month randomised, double-blind, placebo-controlled trial. Subjects received either 3.3 g/day of encapsulated n-3PUFA or encapsulated 3.0 g/day corn oil placebo (PLA) for 6-months, with follow-up at 9-months after 3-month washout. Erythrocyte fatty acid composition was determined via gas chromatography. Endpoints included inflammation-associated endothelial biomarkers (vascular cell adhesion molecule-1 [VCAM-1], intercellular adhesion molecule-1 [ICAM-1], E-selectin, P-selectin, pentraxin-3, vascular endothelial growth factor [VEGF]), and their mediator tumor necrosis factor alpha [TNFα] analysed via immunoassay, vascular structure (carotid intima-media thickness [CIMT]) and function (brachial artery flow mediated dilation [FMD]) determined via ultrasound technique, blood pressure, glycosylated haemoglobin (HbA1c), fasting plasma glucose (FPG), and postprandial metabolism. Results: Twenty subjects completed the trial in full. In the n-3PUFA group, the mean ± SD baseline n-3PUFA index of 4.93 ± 0.94% increased to 7.67 ± 1.86% (P  0.05). Conclusions: This study indicates that daily high-dose-bolus of n-3PUFA supplementation for 6-months does not improve vascular health, glucose homeostasis, or metabolic parameters in subjects with T1D. The findings from this preliminary RCT do not support the use of therapeutic n-3PUFA supplementation in the treatment and management of T1D and its associated complications. Trial Registration ISRCTN, ISRCTN40811115. Registered 27 June 2017, http://www.isrctn.com/ISRCTN40811115
    • …
    corecore