133 research outputs found

    The Energy Operator for a Model with a Multiparametric Infinite Statistics

    Full text link
    In this paper we consider energy operator (a free Hamiltonian), in the second-quantized approach, for the multiparameter quon algebras: aiajqijajai=δij,i,jIa_{i}a_{j}^{\dagger}-q_{ij}a_{j}^{\dagger}a_{i} = \delta_{ij}, i,j\in I with (qij)i,jI(q_{ij})_{i,j\in I} any hermitian matrix of deformation parameters. We obtain an elegant formula for normally ordered (sometimes called Wick-ordered) series expansions of number operators (which determine a free Hamiltonian). As a main result (see Theorem 1) we prove that the number operators are given, with respect to a basis formed by "generalized Lie elements", by certain normally ordered quadratic expressions with coefficients given precisely by the entries of the inverses of Gram matrices of multiparticle weight spaces. (This settles a conjecture of two of the authors (S.M and A.P), stated in [8]). These Gram matrices are hermitian generalizations of the Varchenko's matrices, associated to a quantum (symmetric) bilinear form of diagonal arrangements of hyperplanes (see [12]). The solution of the inversion problem of such matrices in [9] (Theorem 2.2.17), leads to an effective formula for the number operators studied in this paper. The one parameter case, in the monomial basis, was studied by Zagier [15], Stanciu [11] and M{\o}ller [6].Comment: 24 pages. accepted in J. Phys. A. Math. Ge

    Critical behavior of the long-range Ising chain from the largest-cluster probability distribution

    Full text link
    Monte Carlo simulations of the 1D Ising model with ferromagnetic interactions decaying with distance rr as 1/r1+σ1/r^{1+\sigma} are performed by applying the Swendsen-Wang cluster algorithm with cumulative probabilities. The critical behavior in the non-classical critical regime corresponding to 0.5<σ<10.5 <\sigma < 1 is derived from the finite-size scaling analysis of the largest cluster.Comment: 4 pages, 2 figures, in RevTeX, to appear in Phys. Rev. E (Feb 2001

    CAST constraints on the axion-electron coupling

    Get PDF
    In non-hadronic axion models, which have a tree-level axion-electron interaction, the Sun produces a strong axion flux by bremsstrahlung, Compton scattering, and axiorecombination, the "BCA processes." Based on a new calculation of this flux, including for the first time axio-recombination, we derive limits on the axion-electron Yukawa coupling gae and axion-photon interaction strength ga using the CAST phase-I data (vacuum phase). For ma <~ 10 meV/c2 we find ga gae < 8.1 × 10−23 GeV−1 at 95% CL. We stress that a next-generation axion helioscope such as the proposed IAXO could push this sensitivity into a range beyond stellar energy-loss limits and test the hypothesis that white-dwarf cooling is dominated by axion emission

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains table of contents for Section 3, reports on three research projects and a list of publications.California Institute of Technology/Jet Propulsion Laboratory Contract 959548National Aeronautics and Space Administration Grant NAGW-1617National Aeronautics and Space Administration Grant Contract 958461U.S. Navy - Office of Naval Research Grant N00014-92-J-1616U.S. Navy - Office of Naval Research Grant N00014-92-J-4098Digital Equipment Corporation AGMT DTD 11/16/93Joint Services Electronics Program Contract DAAL03-92-C-0001Joint Services Electronics Program Grant DAAH04-95-1-0038MIT Lincoln Laboratory P.O. No. BX-5424U.S. Navy - Office of Naval Research Grant N00014-90-J-1002U.S. Navy - Office of Naval Research Grant N00014-89-J-1019DEMACO Agreement 11/15/93Federal Aviation Administration Grant 94-G-007U.S. Army Cold Regions Research and Engineering Laboratory Contract DACA89-93-K-000

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains table of contents for Section 3 and reports on four research projects.California Institute of Technology/Jet Propulsion Laboratory Agreement 959548National Aeronautics and Space Administration Grant NAGW-1617National Aeronautics and Space Administration Agreement 958461U.S. Navy - Office of Naval Research Grant N00014-89-J-1107U.S. Navy - Office of Naval Research Grant N00014-92-J-1616U.S. Navy - Office of Naval Research Grant N00014-92-J-4098Digital Equipment CorporationJoint Services Electronics Program Contract DAAL03-92-C-0001U.S. Navy - Office of Naval Research Agreement N00014-90-J-1002U.S. Navy - Office of Naval Research Agreement N00014-89-J-1019DEMACOU.S. Army Cold Regions Research and Engineering Laboratory Contract DACA89-93-K-0009U.S. Department of Transportation Agreement DTRS-57-92-C-00054TTD1Advanced Research Projects Agency/Consortium for Superconducting Electronics Contract MDA972-90-C-0021National Science Foundation Fellowship MIP 88-58764National Science Foundatio

    Stencil Nano Lithography Based on a Nanoscale Polymer Shadow Mask: Towards Organic Nanoelectronics

    Get PDF
    A stencil lithography technique has been developed to fabricate organic-material-based electronic devices with sub-micron resolution. Suspended polymethylmethacrylate ( PMMA) membranes were used as shadow masks for defining organic channels and top electrodes. Arrays of pentacene field effect transistors (FETs) with various channel lengths from 50 mu m down to 500 nm were successfully produced from the same batch using this technique. Electrical transport measurements showed that the electrical contacts of all devices were stable and the normalized contact resistances were much lower than previously studied organic FETs. Scaling effects, originating from the bulk space charge current, were investigated by analyzing the channel-length-dependent mobility and hysteresis behaviors. This novel lithography method provides a reliable means for studying the fundamental transport properties of organic materials at the nanoscale as well as enabling potential applications requiring the fabrication of integrated organic nanoelectronic devices.open1155sciescopu

    Multi-trait analysis characterizes the genetics of thyroid function and identifies causal associations with clinical implications

    Get PDF
    To date only a fraction of the genetic footprint of thyroid function has been clarified. We report a genome-wide association study meta-analysis of thyroid function in up to 271,040 individuals of European ancestry, including reference range thyrotropin (TSH), free thyroxine (FT4), free and total triiodothyronine (T3), proxies for metabolism (T3/FT4 ratio) as well as dichotomized high and low TSH levels. We revealed 259 independent significant associations for TSH (61% novel), 85 for FT4 (67% novel), and 62 novel signals for the T3 related traits. The loci explained 14.1%, 6.0%, 9.5% and 1.1% of the total variation in TSH, FT4, total T3 and free T3 concentrations, respectively. Genetic correlations indicate that TSH associated loci reflect the thyroid function determined by free T3, whereas the FT4 associations represent the thyroid hormone metabolism. Polygenic risk score and Mendelian randomization analyses showed the effects of genetically determined variation in thyroid function on various clinical outcomes, including cardiovascular risk factors and diseases, autoimmune diseases, and cancer. In conclusion, our results improve the understanding of thyroid hormone physiology and highlight the pleiotropic effects of thyroid function on various diseases

    A beer a minute in Texas football: Heavy drinking and the heroizing of the antihero in Friday Night Lights

    Get PDF
    This article applies a qualitative framing analysis to the first three seasons of the television series Friday Night Lights, focusing particularly on its incorporation of heavy drinking into narrative representations of the player whose character is most consistently central to the game of football as fictionally mediated in small-town Texas over the course of those three seasons. The analysis suggests that over the course of that period Friday Night Lights embeds nuanced social meanings in its framing of alcohol use by that player and other characters so as to associate it with multiple potential outcomes. Yet among those outcomes, the most dominant framing works to, in effect, reverse a progression through which media representations historically evolved from a heroic model toward an antihero model, with heavy drinking central to that narrative process of meaning-making in such messages.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Multi-trait analysis characterizes the genetics of thyroid function and identifies causal associations with clinical implications

    Get PDF
    To date only a fraction of the genetic footprint of thyroid function has been clarified. We report a genome-wide association study meta-analysis of thyroid function in up to 271,040 individuals of European ancestry, including reference range thyrotropin (TSH), free thyroxine (FT4), free and total triiodothyronine (T3), proxies for metabolism (T3/FT4 ratio) as well as dichotomized high and low TSH levels. We revealed 259 independent significant associations for TSH (61% novel), 85 for FT4 (67% novel), and 62 novel signals for the T3 related traits. The loci explained 14.1%, 6.0%, 9.5% and 1.1% of the total variation in TSH, FT4, total T3 and free T3 concentrations, respectively. Genetic correlations indicate that TSH associated loci reflect the thyroid function determined by free T3, whereas the FT4 associations represent the thyroid hormone metabolism. Polygenic risk score and Mendelian randomization analyses showed the effects of genetically determined variation in thyroid function on various clinical outcomes, including cardiovascular risk factors and diseases, autoimmune diseases, and cancer. In conclusion, our results improve the understanding of thyroid hormone physiology and highlight the pleiotropic effects of thyroid function on various diseases.</p

    Multi-trait analysis characterizes the genetics of thyroid function and identifies causal associations with clinical implications

    Get PDF
    To date only a fraction of the genetic footprint of thyroid function has been clarified. We report a genome-wide association study meta-analysis of thyroid function in up to 271,040 individuals of European ancestry, including reference range thyrotropin (TSH), free thyroxine (FT4), free and total triiodothyronine (T3), proxies for metabolism (T3/FT4 ratio) as well as dichotomized high and low TSH levels. We revealed 259 independent significant associations for TSH (61% novel), 85 for FT4 (67% novel), and 62 novel signals for the T3 related traits. The loci explained 14.1%, 6.0%, 9.5% and 1.1% of the total variation in TSH, FT4, total T3 and free T3 concentrations, respectively. Genetic correlations indicate that TSH associated loci reflect the thyroid function determined by free T3, whereas the FT4 associations represent the thyroid hormone metabolism. Polygenic risk score and Mendelian randomization analyses showed the effects of genetically determined variation in thyroid function on various clinical outcomes, including cardiovascular risk factors and diseases, autoimmune diseases, and cancer. In conclusion, our results improve the understanding of thyroid hormone physiology and highlight the pleiotropic effects of thyroid function on various diseases.</p
    corecore