21,513 research outputs found
Supercharged topping rocket propellant feed system
A rocket propellant feed system utilizing a bleed turbopump to supercharge a topping turbopump is presented. The bleed turbopump is of a low pressure type to meet the cavitation requirements imposed by the propellant storage tanks. The topping turbopump is of a high pressure type and develops 60 to 70 percent of the pressure rise in the propellant
Domain-Wall Energies and Magnetization of the Two-Dimensional Random-Bond Ising Model
We study ground-state properties of the two-dimensional random-bond Ising
model with couplings having a concentration of antiferromagnetic
and of ferromagnetic bonds. We apply an exact matching algorithm which
enables us the study of systems with linear dimension up to 700. We study
the behavior of the domain-wall energies and of the magnetization. We find that
the paramagnet-ferromagnet transition occurs at compared to
the concentration at the Nishimory point, which means that the
phase diagram of the model exhibits a reentrance. Furthermore, we find no
indications for an (intermediate) spin-glass ordering at finite temperature.Comment: 7 pages, 12 figures, revTe
Ground-State and Domain-Wall Energies in the Spin-Glass Region of the 2D Random-Bond Ising Model
The statistics of the ground-state and domain-wall energies for the
two-dimensional random-bond Ising model on square lattices with independent,
identically distributed bonds of probability of and of
are studied. We are able to consider large samples of up to
spins by using sophisticated matching algorithms. We study
systems, but we also consider samples, for different aspect ratios
. We find that the scaling behavior of the ground-state energy and
its sample-to-sample fluctuations inside the spin-glass region () are characterized by simple scaling functions. In particular, the
fluctuations exhibit a cusp-like singularity at . Inside the spin-glass
region the average domain-wall energy converges to a finite nonzero value as
the sample size becomes infinite, holding fixed. Here, large finite-size
effects are visible, which can be explained for all by a single exponent
, provided higher-order corrections to scaling are included.
Finally, we confirm the validity of aspect-ratio scaling for : the
distribution of the domain-wall energies converges to a Gaussian for ,
although the domain walls of neighboring subsystems of size are
not independent.Comment: 11 pages with 15 figures, extensively revise
Statistics of lowest excitations in two dimensional Gaussian spin glasses
A detailed investigation of lowest excitations in two-dimensional Gaussian
spin glasses is presented. We show the existence of a new zero-temperature
exponent lambda describing the relative number of finite-volume excitations
with respect to large-scale ones. This exponent yields the standard thermal
exponent of droplet theory theta through the relation, theta=d(lambda-1). Our
work provides a new way to measure the thermal exponent theta without any
assumption about the procedure to generate typical low-lying excitations. We
find clear evidence that theta < theta_{DW} where theta_{DW} is the thermal
exponent obtained in domain-wall theory showing that MacMillan excitations are
not typical.Comment: 4 pages, 3 figures, (v2) revised version, (v3) corrected typo
Ground states of two-dimensional J Edwards-Anderson spin glasses
We present an exact algorithm for finding all the ground states of the
two-dimensional Edwards-Anderson spin glass and characterize its
performance. We investigate how the ground states change with increasing system
size and and with increasing antiferromagnetic bond ratio . We find that
that some system properties have very large and strongly non-Gaussian
variations between realizations.Comment: 15 pages, 21 figures, 2 tables, uses revtex4 macro
A new method for analyzing ground-state landscapes: ballistic search
A ``ballistic-search'' algorithm is presented which allows the identification
of clusters (or funnels) of ground states in Ising spin glasses even for
moderate system sizes. The clusters are defined to be sets of states, which are
connected in state-space by chains of zero-energy flips of spins. The technique
can also be used to estimate the sizes of such clusters. The performance of the
method is tested with respect to different system sizes and choices of
parameters. As an application the ground-state funnel structure of
two-dimensional +or- J spin glasses of systems up to size L=20 is analyzed by
calculating a huge number of ground states per realization. A T=0 entropy per
spin of s_0=0.086(4)k_B is obtained.Comment: 10 pages, 11 figures, 35 references, revte
Reduction of Two-Dimensional Dilute Ising Spin Glasses
The recently proposed reduction method is applied to the Edwards-Anderson
model on bond-diluted square lattices. This allows, in combination with a
graph-theoretical matching algorithm, to calculate numerically exact ground
states of large systems. Low-temperature domain-wall excitations are studied to
determine the stiffness exponent y_2. A value of y_2=-0.281(3) is found,
consistent with previous results obtained on undiluted lattices. This
comparison demonstrates the validity of the reduction method for bond-diluted
spin systems and provides strong support for similar studies proclaiming
accurate results for stiffness exponents in dimensions d=3,...,7.Comment: 7 pages, RevTex4, 6 ps-figures included, for related information, see
http://www.physics.emory.edu/faculty/boettcher
Mott-Hubbard exciton in the optical conductivity of YTiO3 and SmTiO3
In the Mott-Hubbard insulators YTiO3 and SmTiO3 we study optical excitations
from the lower to the upper Hubbard band, d^1d^1 -> d^0d^2. The multi-peak
structure observed in the optical conductivity reflects the multiplet structure
of the upper Hubbard band in a multi-orbital system. Absorption bands at 2.55
and 4.15 eV in the ferromagnet YTiO3 correspond to final states with a triplet
d^2 configuration, whereas a peak at 3.7 eV in the antiferromagnet SmTiO3 is
attributed to a singlet d^2 final state. A strongly temperature-dependent peak
at 1.95 eV in YTiO3 and 1.8 eV in SmTiO3 is interpreted in terms of a Hubbard
exciton, i.e., a charge-neutral (quasi-)bound state of a hole in the lower
Hubbard band and a double occupancy in the upper one. The binding to such a
Hubbard exciton may arise both due to Coulomb attraction between
nearest-neighbor sites and due to a lowering of the kinetic energy in a system
with magnetic and/or orbital correlations. Furthermore, we observe anomalies of
the spectral weight in the vicinity of the magnetic ordering transitions, both
in YTiO3 and SmTiO3. In the G-type antiferromagnet SmTiO3, the sign of the
change of the spectral weight at T_N depends on the polarization. This
demonstrates that the temperature dependence of the spectral weight is not
dominated by the spin-spin correlations, but rather reflects small changes of
the orbital occupation.Comment: Strongly extended version; new data of SmTiO3 included; detailed
discussion of temperature dependence include
Combined ultraviolet studies of astronomical sources
Ultraviolet studies of astronomical sources are discussed. Some studies utilized IVE data. Non-radiative shock at the edge of the Cygnses Loop, stellar flares, local interestellar medium, hot galaxies, stellar mass ejection, contact binaries, double quasars, and stellar chromosphere and coronae are discussed
- …