164 research outputs found
Influence of short-term dietary measures on dioxin concentrations in human milk.
Breast-feeding may expose infants to high levels of toxic chlorinated dioxins. To diminish intake of these lipophilic compounds by the baby, two diets were tested for their ability to reduce concentrations of dioxins in human milk. The diets were a low-fat/high- carbohydrate/low-dioxin diet. (about 20% of energy intake derived from fat) and a high fat /low-carbohydrate/low-dioxin diet. These diets were tested in 16 and 18 breast-feeding women, respectively. The test diets were followed for 5 consecutive days in the fourth week after delivery. Milk was sampled before and at the end of the dietary regimen, and dioxin concentrations and fatty acid concentrations were determined. Despite significant influences of these diets on the fatty acid profiles, no significant influence on the dioxin concentrations in breast milk could be found. We conclude that short-term dietary measures will not reduce dioxin concentration in human milk
Bile Acid Sequestrants for Lipid and Glucose Control
Bile acids are generated in the liver and are traditionally recognized for their regulatory role in multiple metabolic processes including bile acid homeostasis, nutrient absorption, and cholesterol homeostasis. Recently, bile acids emerged as signaling molecules that, as ligands for the bile acid receptors farnesoid X receptor (FXR) and TGR5, activate and integrate multiple complex signaling pathways involved in lipid and glucose metabolism. Bile acid sequestrants are pharmacologic molecules that bind to bile acids in the intestine resulting in the interruption of bile acid homeostasis and, consequently, reduction in low-density lipoprotein cholesterol levels in hypercholesterolemia. Bile acid sequestrants also reduce glucose levels and improve glycemic control in persons with type 2 diabetes mellitus (T2DM). This article examines the mechanisms by which bile acid–mediated activation of FXR and TGR5 signaling pathways regulate lipid and glucose metabolism and the potential implications for bile acid sequestrant–mediated regulation of lipid and glucose levels in T2DM
Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque
Carotid intima media thickness (cIMT) and plaque determined by ultrasonography are established measures of subclinical atherosclerosis that each predicts future cardiovascular disease events. We conducted a meta-analysis of genome-wide association data in 31,211 participants of European ancestry from nine large studies in the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. We then sought additional evidence to support our findings among 11,273 individuals using data from seven additional studies. In the combined meta-analysis, we identified three genomic regions associated with common carotid intima media thickness and two different regions associated with the presence of carotid plaque (P < 5 × 10 -8). The associated SNPs mapped in or near genes related to cellular signaling, lipid metabolism and blood pressure homeostasis, and two of the regions were associated with coronary artery disease (P < 0.006) in the Coronary Artery Disease Genome-Wide Replication and Meta-Analysis (CARDIoGRAM) consortium. Our findings may provide new insight into pathways leading to subclinical atherosclerosis and subsequent cardiovascular events
Cardiorespiratory effects of venous lipid micro embolization in an experimental model of mediastinal shed blood reinfusion
<p>Abstract</p> <p>Background</p> <p>Retransfusion of the patient's own blood during surgery is used to reduce the need for allogenic blood transfusion. It has however been found that this blood contains lipid particles, which form emboli in different organs if the blood is retransfused on the arterial side. In this study, we tested whether retransfusion of blood containing lipid micro-particles on the venous side in a porcine model will give hemodynamic effects.</p> <p>Methods</p> <p>Seven adult pigs were used. A shed blood surrogate containing 400 ml diluted blood and 5 ml radioactive triolein was produced to generate a lipid embolic load. The shed blood surrogate was rapidly (<2 minutes) retransfused from a transfusion bag to the right atrium under general anesthesia. The animals' arterial, pulmonary, right and left atrial pressure were monitored, together with cardiac output and deadspace. At the end of the experiment, an increase in cardiac output and pulmonary pressure was pharmacologically induced to try to flush out lipid particles from the lungs.</p> <p>Results</p> <p>A more than 30-fold increase in pulmonary vascular resistance was observed, with subsequent increase in pulmonary artery pressure, and decrease in cardiac output and arterial pressure. This response was transient, but was followed by a smaller, persistent increase in pulmonary vascular resistance. Only a small portion of the infused triolein passed the lungs, and only a small fraction could be recirculated by increasing cardiac output and pulmonary pressure.</p> <p>Conclusion</p> <p>Infusion of blood containing lipid micro-emboli on the venous side leads to acute, severe hemodynamic responses that can be life threatening. Lipid particles will be trapped in the lungs, leading to persistent effects on the pulmonary vascular resistance.</p
A Review of the Rationale for Additional Therapeutic Interventions to Attain Lower LDL-C When Statin Therapy Is Not Enough
Statins alone are not always adequate therapy to achieve low-density lipoprotein (LDL) goals in many patients. Many options are available either alone or in combination with statins that makes it possible to reach recommended goals in a safe and tolerable fashion for most patients. Ezetimibe and bile acid sequestrants reduce cholesterol transport to the liver and can be used in combination. Niacin is very effective at lowering LDL, beyond its ability to raise high-density lipoprotein and shift LDL particle size to a less atherogenic type. When statins cannot be tolerated at all, red yeast rice can be used if proper formulations of the product are obtained. Nutrients can also be added to the diet, including plant stanols and sterols, soy protein, almonds, and fiber, either individually or all together as a portfolio diet. A clear understanding of how each of these strategies works is essential for effective results
From Vulnerable Plaque to Vulnerable Patient
Atherosclerotic cardiovascular disease results in >19 million deaths annually, and coronary heart disease accounts for the majority of this toll. Despite major advances in treatment of coronary heart disease patients, a large number of victims of the disease who are apparently healthy die suddenly without prior symptoms. Available screening and diagnostic methods are insufficient to identify the victims before the event occurs. The recognition of the role of the vulnerable plaque has opened new avenues of opportunity in the field of cardiovascular medicine. This consensus document concludes the following. (1) Rupture-prone plaques are not the only vulnerable plaques. All types of atherosclerotic plaques with high likelihood of thrombotic complications and rapid progression should be considered as vulnerable plaques. We propose a classification for clinical as well as pathological evaluation of vulnerable plaques. (2) Vulnerable plaques are not the only culprit factors for the development of acute coronary syndromes, myocardial infarction, and sudden cardiac death. Vulnerable blood (prone to thrombosis) and vulnerable myocardium (prone to fatal arrhythmia) play an important role in the outcome. Therefore, the term "vulnerable patient" may be more appropriate and is proposed now for the identification of subjects with high likelihood of developing cardiac events in the near future. (3) A quantitative method for cumulative risk assessment of vulnerable patients needs to be developed that may include variables based on plaque, blood, and myocardial vulnerability. In Part I of this consensus document, we cover the new definition of vulnerable plaque and its relationship with vulnerable patients. Part II of this consensus document will focus on vulnerable blood and vulnerable myocardium and provide an outline of overall risk assessment of vulnerable patients. Parts I and II are meant to provide a general consensus and overviews the new field of vulnerable patient. Recently developed assays (eg, C-reactive protein), imaging techniques (eg, CT and MRI), noninvasive electrophysiological tests (for vulnerable myocardium), and emerging catheters (to localize and characterize vulnerable plaque) in combination with future genomic and proteomic techniques will guide us in the search for vulnerable patients. It will also lead to the development and deployment of new therapies and ultimately to reduce the incidence of acute coronary syndromes and sudden cardiac death. We encourage healthcare policy makers to promote translational research for screening and treatment of vulnerable patients
- …