368 research outputs found
Measuring the quantum efficiency of single radiating dipoles using a scanning mirror
Using scanning probe techniques, we show the controlled manipulation of the
radiation from single dipoles. In one experiment we study the modification of
the fluorescence lifetime of a single molecular dipole in front of a movable
silver mirror. A second experiment demonstrates the changing plasmon spectrum
of a gold nanoparticle in front of a dielectric mirror. Comparison of our data
with theoretical models allows determination of the quantum efficiency of each
radiating dipole.Comment: 4 pages, 4 figure
Methane-Fueled Syntrophy through Extracellular Electron Transfer: Uncovering the Genomic Traits Conserved within Diverse Bacterial Partners of Anaerobic Methanotrophic Archaea
The anaerobic oxidation of methane by anaerobic methanotrophic (ANME) archaea in syntrophic partnership with deltaproteobacterial sulfate-reducing bacteria (SRB) is the primary mechanism for methane removal in ocean sediments. The mechanism of their syntrophy has been the subject of much research as traditional intermediate compounds, such as hydrogen and formate, failed to decouple the partners. Recent findings have indicated the potential for extracellular electron transfer from ANME archaea to SRB, though it is unclear how extracellular electrons are integrated into the metabolism of the SRB partner. We used metagenomics to reconstruct eight genomes from the globally distributed SEEP-SRB1 clade of ANME partner bacteria to determine what genomic features are required for syntrophy. The SEEP-SRB1 genomes contain large multiheme cytochromes that were not found in previously described free-living SRB and also lack periplasmic hydrogenases that may prevent an independent lifestyle without an extracellular source of electrons from ANME archaea. Metaproteomics revealed the expression of these cytochromes at in situ methane seep sediments from three sites along the Pacific coast of the United States. Phylogenetic analysis showed that these cytochromes appear to have been horizontally transferred from metal-respiring members of the Deltaproteobacteria such as Geobacter and may allow these syntrophic SRB to accept extracellular electrons in place of other chemical/organic electron donors
Spectral structure and decompositions of optical states, and their applications
We discuss the spectral structure and decomposition of multi-photon states.
Ordinarily `multi-photon states' and `Fock states' are regarded as synonymous.
However, when the spectral degrees of freedom are included this is not the
case, and the class of `multi-photon' states is much broader than the class of
`Fock' states. We discuss the criteria for a state to be considered a Fock
state. We then address the decomposition of general multi-photon states into
bases of orthogonal eigenmodes, building on existing multi-mode theory, and
introduce an occupation number representation that provides an elegant
description of such states that in many situations simplifies calculations.
Finally we apply this technique to several example situations, which are highly
relevant for state of the art experiments. These include Hong-Ou-Mandel
interference, spectral filtering, finite bandwidth photo-detection, homodyne
detection and the conditional preparation of Schr\"odinger Kitten and Fock
states. Our techniques allow for very simple descriptions of each of these
examples.Comment: 12 page
Microbiota functional activity biosensors for characterizing nutrient metabolism in vivo
Methods for measuring gut microbiota biochemical activities in vivo are needed to characterize its functional states in health and disease. To illustrate one approach, an arabinan-containing polysaccharide was isolated from pea fiber, its structure defined, and forward genetic and proteomic analyses used to compare its effects, versus unfractionated pea fiber and sugar beet arabinan, on a human gut bacterial strain consortium in gnotobiotic mice. We produced \u27Microbiota Functional Activity Biosensors\u27 (MFABs) consisting of glycans covalently linked to the surface of fluorescent paramagnetic microscopic glass beads. Three MFABs, each containing a unique glycan/fluorophore combination, were simultaneously orally gavaged into gnotobiotic mice, recovered from their intestines, and analyzed to directly quantify bacterial metabolism of structurally distinct arabinans in different human diet contexts. Colocalizing pea-fiber arabinan and another polysaccharide (glucomannan) on the bead surface enhanced in vivo degradation of glucomannan. MFABs represent a potentially versatile platform for developing new prebiotics and more nutritious foods
One-time nitrogen fertilization shifts switchgrass soil microbiomes within a context of larger spatial and temporal variation
Soil microbiome responses to short-term nitrogen (N) inputs remain uncertain when compared with previous research that has focused on long-term fertilization responses. Here, we examined soil bacterial/archaeal and fungal communities pre- and post-N fertilization in an 8 year-old switchgrass field, in which twenty-four plots received N fertilization at three levels (0, 100, and 200 kg N ha-1 as NH4NO3) for the first time since planting. Soils were collected at two depths, 0â5 and 5â15 cm, for DNA extraction and amplicon sequencing of 16S rRNA genes and ITS regions for assessment of microbial community composition. Baseline assessments prior to fertilization revealed no significant pre-existing divergence in either bacterial/archaeal or fungal communities across plots. The one-time N fertilizations increased switchgrass yields and tissue N content, and the added N was nearly completely removed from the soil of fertilized plots by the end of the growing season. Both bacterial/archaeal and fungal communities showed large spatial (by depth) and temporal variation (by season) within each plot, accounting for 17 and 12â22% of the variation as calculated from the Sq. root of PERMANOVA tests for bacterial/archaeal and fungal community composition, respectively. While N fertilization effects accounted for only ~4% of overall variation, some specific microbial groups, including the bacterial genus Pseudonocardia and the fungal genus Archaeorhizomyces, were notably repressed by fertilization at 200 kg N ha-1. Bacterial groups varied with both depth in the soil profile and time of sampling, while temporal variability shaped the fungal community more significantly than vertical heterogeneity in the soil. These results suggest that short-term effects of N fertilization are significant but subtle, and other sources of variation will need to be carefully accounted for study designs including multiple intra-annual sampling dates, rather than one-time âsnapshotâ analyses that are common in the literature. Continued analyses of these trends over time with fertilization and management are needed to understand how these effects may persist or change over time
Climate Policies with Burden Sharing: The Economics of Climate Financing
The maintenance of a favorable climate accounts for the most challenging contemporary global governance predicament that seems to pit todayâs generation against future world inhabitants. In a trade-off of economic growth versus sustainability, a broad-based international coalition could establish climate justice. As a novel angle towards climate justice, the following paper proposes (1) a well-balanced climate mitigation and adaptation public policy mix guided by micro- and macroeconomic analysis results, and (2) a new way of funding climate change mitigation and adaptation policies through carbon tax and broad-based climate bonds that also involve future generations. Contemporary climate financing strategies (e.g., Sachs Model) are thereby added into Integrated Assessment Models of the Nordhaus Type. Overall, the paper strives to delve deeper into a discussion of how market economies can be brought to a path consistent with prosperity and sustainability. Finding innovative ways how to finance climate abatement over time coupled with future risk prevention as well as adaptation to higher temperatures appears as an innovative and easily-implementable solution to nudge overlapping generations towards climate justice in the sustainability domain
Eigenvalue Problem in Two Dimension for An Irregular Boundary
An analytical perturbative method is suggested for solving the Helmholtz
equation (\bigtriangledown^{2} + k^{2}){\psi} = 0 in two dimensions where
{\psi} vanishes on an irregular closed curve. We can thus find the energy
levels of a quantum mechanical particle confined in an infinitely deep
potential well in two dimensions having an irregular boundary or the vibration
frequencies of a membrane whose edge is an irregular closed curve. The method
is tested by calculating the energy levels for an elliptical and a
supercircular boundary and comparing with the results obtained numerically.
Further, the phenomenon of level crossing due to shape variation is also
discussed.Comment: 16 pages, 4 figures, v2 matches the journal versio
Nanomechanical probing of the layer/substrate interface of an exfoliated InSe sheet on sapphire
Van der Waals (vdW) layered crystals and heterostructures have attracted substantial interest for potential applications in a wide range of emerging technologies. An important, but often overlooked, consideration in the development of implementable devices is phonon transport through the structure interfaces. Here we report on the interface properties of exfoliated InSe on a sapphire substrate. We use a picosecond acoustic technique to probe the phonon resonances in the InSe vdW layered crystal. Analysis of the nanomechanics indicates that the InSe is mechanically decoupled from the substrate and thus presents an elastically imperfect interface. A high degree of phonon isolation at the interface points toward applications in thermoelectric devices, or the inclusion of an acoustic transition layer in device design. These findings demonstrate basic properties of layered structures and so illustrate the usefulness of nanomechanical probing in nanolayer/nanolayer or nanolayer/substrate interface tuning in vdW heterostructures
- âŠ