1,338 research outputs found

    Subtraction of test mass angular noise in the LISA Technology Package interferometer

    Full text link
    We present recent sensitivity measurements of the LISA Technology Package interferometer with articulated mirrors as test masses, actuated by piezo-electric transducers. The required longitudinal displacement resolution of 9 pm/sqrt[Hz] above 3 mHz has been demonstrated with an angular noise that corresponds to the expected in on-orbit operation. The excess noise contribution of this test mass jitter onto the sensitive displacement readout was completely subtracted by fitting the angular interferometric data streams to the longitudinal displacement measurement. Thus, this cross-coupling constitutes no limitation to the required performance of the LISA Technology Package interferometry.Comment: Applied Physics B - Lasers and Optics (2008

    In-plane gate single-electron transistor in Ga[Al]As fabricated by scanning probe lithography

    Full text link
    A single-electron transistor has been realized in a Ga[Al]As heterostructure by oxidizing lines in the GaAs cap layer with an atomic force microscope. The oxide lines define the boundaries of the quantum dot, the in-plane gate electrodes, and the contacts of the dot to source and drain. Both the number of electrons in the dot as well as its coupling to the leads can be tuned with an additional, homogeneous top gate electrode. Pronounced Coulomb blockade oscillations are observed as a function of voltages applied to different gates. We find that, for positive top-gate voltages, the lithographic pattern is transferred with high accuracy to the electron gas. Furthermore, the dot shape does not change significantly when in-plane voltages are tuned.Comment: 4 pages, 3 figure

    Transport properties of quantum dots with hard walls

    Full text link
    Quantum dots are fabricated in a Ga[Al]As-heterostructure by local oxidation with an atomic force microscope. This technique, in combination with top gate voltages, allows us to generate steep walls at the confining edges and small lateral depletion lengths. The confinement is characterized by low-temperature magnetotransport measurements, from which the dots' energy spectrum is reconstructed. We find that in small dots, the addition spectrum can qualitatively be described within a Fock-Darwin model. For a quantitative analysis, however, a hard-wall confinement has to be considered. In large dots, the energy level spectrum deviates even qualitatively from a Fock-Darwin model. The maximum wall steepness achieved is of the order of 0.4 meV/nm.Comment: 9 pages, 5 figure

    Transport properties of quantum dots with hard walls

    Full text link
    Quantum dots are fabricated in a Ga[Al]As-heterostructure by local oxidation with an atomic force microscope. This technique, in combination with top gate voltages, allows us to generate steep walls at the confining edges and small lateral depletion lengths. The confinement is characterized by low-temperature magnetotransport measurements, from which the dots' energy spectrum is reconstructed. We find that in small dots, the addition spectrum can qualitatively be described within a Fock-Darwin model. For a quantitative analysis, however, a hard-wall confinement has to be considered. In large dots, the energy level spectrum deviates even qualitatively from a Fock-Darwin model. The maximum wall steepness achieved is of the order of 0.4 meV/nm.Comment: 9 pages, 5 figure

    Generic suppression of conductance quantization of interacting electrons in graphene nanoribbons in a perpendicular magnetic field

    Full text link
    The effects of electron interaction on the magnetoconductance of graphene nanoribbons (GNRs) are studied within the Hartree approximation. We find that a perpendicular magnetic field leads to a suppression instead of an expected improvement of the quantization. This suppression is traced back to interaction-induced modifications of the band structure leading to the formation of compressible strips in the middle of GNRs. It is also shown that the hard wall confinement combined with electron interaction generates overlaps between forward and backward propagating states, which may significantly enhance backscattering in realistic GNRs. The relation to available experiments is discussed.Comment: 4 pages, 3 figure

    Electronic properties of antidot lattices fabricated by atomic force lithography

    Full text link
    Antidot lattices were fabricated by atomic force lithography using local oxidation. High quality finite 20 x20 lattices are demonstrated with periods of 300 nm. The low temperature magnetoresistance shows well developed commensurability oscillations as well as a quenching of the Hall effect around zero magnetic field. In addition, we find B periodic oscillations superimposed on the classical commensurability peaks at temperatures as high as 1.7 K. These observations indicate the high electronic quality of our samples.Comment: Appl. Phys. Lett., in prin

    Measuring random force noise for LISA aboard the LISA Pathfinder mission

    Full text link
    The LTP (LISA Testflight Package), to be flown aboard the ESA / NASA LISA Pathfinder mission, aims to demonstrate drag-free control for LISA test masses with acceleration noise below 30 fm/s^2/Hz^1/2 from 1-30 mHz. This paper describes the LTP measurement of random, position independent forces acting on the test masses. In addition to putting an overall upper limit for all source of random force noise, LTP will measure the conversion of several key disturbances into acceleration noise and thus allow a more detailed characterization of the drag-free performance to be expected for LISA.Comment: 7 pages, 3 figures. To be published in Classical and Quantum Gravity with the proceedings of the 2003 Amaldi Meetin

    Filament absorption study using THEMIS and SOHO/CDS-SUMER observations

    Get PDF
    A long filament has been observed with THEMIS/MSDP and SOHO/CDS-SUMER, during a coordinated campaign (JOPs 131/95) on May 5, 2000. THEMIS provided 2D Hα spectra, SUMER rasters in the L4 line and spectra of the whole Lymanseries and the Lymancon tinuum, CDS obtained rasters in several EUV lines (e.g., Mg X 624 ˚A, Si XII 520 ˚A, Ca X 557 ˚A and He I 584 ˚A). A large depression of coronal line emission in the CDS images corresponds to the absorption by the hydrogen Lyman continuum and represents the EUV filament. Non-LTE radiative transfer calculations allow to explain, in terms of opacities, the large width of the EUV filament compared to the width of the Hα filament itself. The optical thickness of the Lyman continuum is larger than that of Hα line by one to two orders of magnitude. This could be of great importance in the understanding of the filament formation, if we consider that cool material does exist in filament channels but is optically too thin to be visible in Hα images
    corecore