2,114 research outputs found

    Correlation energy of two electrons in the high-density limit

    Full text link
    We consider the high-density-limit correlation energy \Ec in D≥2D \ge 2 dimensions for the 1S^1S ground states of three two-electron systems: helium (in which the electrons move in a Coulombic field), spherium (in which they move on the surface of a sphere), and hookium (in which they move in a quadratic potential). We find that the \Ec values are strikingly similar, depending strongly on DD but only weakly on the external potential. We conjecture that, for large DD, the limiting correlation energy \Ec \sim -\delta^2/8 in any confining external potential, where δ=1/(D−1)\delta = 1/(D-1).Comment: 4 pages, 0 figur

    Non-adiabatic Effects in the Dissociation of Oxygen Molecules at the Al(111) Surface

    Full text link
    The measured low initial sticking probability of oxygen molecules at the Al(111) surface that had puzzled the field for many years was recently explained in a non-adiabatic picture invoking spin-selection rules [J. Behler et al., Phys. Rev. Lett. 94, 036104 (2005)]. These selection rules tend to conserve the initial spin-triplet character of the free O2 molecule during the molecule's approach to the surface. A new locally-constrained density-functional theory approach gave access to the corresponding potential-energy surface (PES) seen by such an impinging spin-triplet molecule and indicated barriers to dissociation which reduce the sticking probability. Here, we further substantiate this non-adiabatic picture by providing a detailed account of the employed approach. Building on the previous work, we focus in particular on inaccuracies in present-day exchange-correlation functionals. Our analysis shows that small quantitative differences in the spin-triplet constrained PES obtained with different gradient-corrected functionals have a noticeable effect on the lowest kinetic energy part of the resulting sticking curve.Comment: 17 pages including 11 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    Excitation Gap from Optimized Correlation Functions in Quantum Monte Carlo Simulations

    Full text link
    We give a prescription for finding optimized correlation functions for the extraction of the gap to the first excited state within quantum Monte Carlo simulations. We demonstrate that optimized correlation functions provide a more accurate reading of the gap when compared to other `non-optimized' correlation functions and are generally characterized by considerably larger signal-to-noise ratios. We also analyze the cost of the procedure and show that it is not computationally demanding. We illustrate the effectiveness of the proposed procedure by analyzing several exemplary many-body systems of interacting spin-1/2 particles.Comment: 11 pages, 5 figure

    Chemical engineering of adamantane by lithium functionalization: A first-principles density functional theory study

    Full text link
    Using first-principle density functional theory, we investigated the hydrogen storage capacity of Li functionalized adamantane. We showed that if one of the acidic hydrogen atoms of adamantane is replaced by Li/Li+, the resulting complex is activated and ready to adsorb hydrogen molecules at a high gravimetric weight percent of around ~ 7.0 %. Due to polarization of hydrogen molecules under the induced electric field generated by positively charged Li/Li+, they are adsorbed on ADM.Li/Li+ complexes with an average binding energy of ~ -0.15 eV/H2, desirable for hydrogen storage applications. We also examined the possibility of the replacement of a larger number of acidic hydrogen atoms of adamantane by Li/Li+ and the possibility of aggregations of formed complexes in experiments. The stabilities of the proposed structures were investigated by calculating vibrational spectra and doing MD simulations.Comment: 8 pages, 6 figures, 2 tables, accepted for publication in Physical Review

    The experimental gas-phase structures of 1,3,5-trisilylbenzene and hexasilylbenzene and the theoretical structures of all benzenes with three or more silyl substituents

    Get PDF
    The structures of 1,3,5-trisilylbenzene and hexasilylbenzene in the gas phase have been determined by electron diffraction, and that of 1,3,5-trisilylbenzene by X-ray crystallography. The structures of three trisilylbenzene isomers, three tetrasilylbenzenes, pentasilylbenzene and hexasilylbenzene have been computed, ab initio and using Density Functional Theory, at levels up to MP2/6-31G*. The primary effect of silyl substituents is to narrow the ring angle at the substituted carbon atoms. Steric interactions between silyl groups on neighbouring carbon atoms lead first to displacement of these groups away from one another, and then to displacement out of the ring plane, with alternate groups moving to opposite sides of the ring. In the extreme example, hexasilylbenzene, the SiCCSi dihedral angle is 17.8(8)°

    Electron Correlation and the c-axis Dispersion of Cu d_z^2: a New Band Structure for High Temperature Superconductors

    Full text link
    Previously we showed the major effect of electron correlation in the cuprate superconductors is to lower the energy of the Cu d_x^2-y^2/O p_sigma (x^2-y^2) band with respect to the Cu d_z^2/O' p_z (z^2) band. In our 2D Hubbard model for La_1.85Sr_0.15CuO_4 (LaSCO), the z^2 band is narrow and crosses the standard x^2-y^2 band just below the Fermi level. In this work, we introduce c-axis dispersion to the model and find the z^2 band to have considerable anisotropic 3D character. An additional hole-like surface opens up in the z^2 band at (0,0,2pi/c) which expands with doping. At sufficient doping levels, a symmetry allowed x^2-y^2/z^2 band crossing along the (0,0)-(pi,pi) direction of the Brillouin zone appears at the Fermi level. At this point, Cooper pairs between the two bands (e.g. (k uparrow x^2-y^2/k downarrow z^2)) can form, providing the basis for the Interband Pairing Theory of superconductivity in these materials.Comment: submitted to Phys. Rev. Lett. Related publications: Phys. Rev. B 58, 12303 (1998); Phys. Rev. B 58, 12323 (1998); cond-mat/9903088; cond-mat/990310

    Excited States of Ladder-type Poly-p-phenylene Oligomers

    Full text link
    Ground state properties and excited states of ladder-type paraphenylene oligomers are calculated applying semiempirical methods for up to eleven phenylene rings. The results are in qualitative agreement with experimental data. A new scheme to interpret the excited states is developed which reveals the excitonic nature of the excited states. The electron-hole pair of the S1-state has a mean distance of approximately 4 Angstroem.Comment: 24 pages, 21 figure
    • …
    corecore