295 research outputs found
Exactly solvable potentials of Calogero type for q-deformed Coxeter groups
We establish that by parameterizing the configuration space of a
one-dimensional quantum system by polynomial invariants of q-deformed Coxeter
groups it is possible to construct exactly solvable models of Calogero type. We
adopt the previously introduced notion of solvability which consists of
relating the Hamiltonian to finite dimensional representation spaces of a Lie
algebra. We present explicitly the -case for which we construct the
potentials by means of suitable gauge transformations.Comment: 22 pages Late
Quantum Calogero-Moser Models: Integrability for all Root Systems
The issues related to the integrability of quantum Calogero-Moser models
based on any root systems are addressed. For the models with degenerate
potentials, i.e. the rational with/without the harmonic confining force, the
hyperbolic and the trigonometric, we demonstrate the following for all the root
systems: (i) Construction of a complete set of quantum conserved quantities in
terms of a total sum of the Lax matrix (L), i.e. (\sum_{\mu,\nu\in{\cal
R}}(L^n)_{\mu\nu}), in which ({\cal R}) is a representation space of the
Coxeter group. (ii) Proof of Liouville integrability. (iii) Triangularity of
the quantum Hamiltonian and the entire discrete spectrum. Generalised Jack
polynomials are defined for all root systems as unique eigenfunctions of the
Hamiltonian. (iv) Equivalence of the Lax operator and the Dunkl operator. (v)
Algebraic construction of all excited states in terms of creation operators.
These are mainly generalisations of the results known for the models based on
the (A) series, i.e. (su(N)) type, root systems.Comment: 45 pages, LaTeX2e, no figure
Pharmacokinetics of oxycodone/naloxone and its metabolites in patients with end-stage renal disease during and between haemodialysis sessions
The pharmacokinetics of oxycodone in patients with end-stage renal disease (ESRD) requiring haemodialysis are largely unknown. Therefore, we investigated the pharmacokinetics of oxycodone/naloxone prolonged release and their metabolites in patients with ESRD during and between haemodialysis sessions.; Single doses of oxycodone/naloxone (5/2.5 or 10/5âmg) were administered in nine patients with ESRD using a cross-over design on the day of dialysis and on a day between dialysis sessions. Plasma, dialysate and urine concentrations of oxycodone, naloxone and their metabolites were determined up to 48âh post-dosing using a liquid chromatography-tandem mass spectrometry system.; Haemodialysis performed 6-10âh after dosing removed âŒ10% of the administered dose of oxycodone predominantly as unconjugated oxycodone and noroxycodone or conjugated oxymorphone and noroxymorphone. The haemodialysis clearance of oxycodone based on its recovery in dialysate was (mean ± SD) 8.4â±â2.1âL/h. The geometric mean (coefficient of variation) plasma elimination half-life of oxycodone during the 4-h haemodialysis period was 3.9âh (39%) which was significantly shorter than the 5.7âh (22%) without haemodialysis. Plasma levels of the active metabolite oxymorphone in its unconjugated form were very low.; Oxycodone is removed during haemodialysis. The pharmacokinetics including the relatively short half-life of oxycodone in patients with ESRD with or without haemodialysis and the absence of unconjugated active metabolites indicate that oxycodone can be used at usual doses in patients requiring dialysis
Recommended from our members
Nuclear materials stabilization and packaging. Quarterly status report, January 1--March 31, 1996
This report documents progress on the Los Alamos Nuclear Materials Stabilization and Packaging projects for the second quarter of FY 1996. It covers development and production activities for the Plutonium Packaging Project, the Plutonium Recovery and Processing Project, and the Uranium Recovery and Processing Project. In addition, it reports on quality assurance activities for the Plutonium Packaging Project
Young and Intermediate-age Distance Indicators
Distance measurements beyond geometrical and semi-geometrical methods, rely
mainly on standard candles. As the name suggests, these objects have known
luminosities by virtue of their intrinsic proprieties and play a major role in
our understanding of modern cosmology. The main caveats associated with
standard candles are their absolute calibration, contamination of the sample
from other sources and systematic uncertainties. The absolute calibration
mainly depends on their chemical composition and age. To understand the impact
of these effects on the distance scale, it is essential to develop methods
based on different sample of standard candles. Here we review the fundamental
properties of young and intermediate-age distance indicators such as Cepheids,
Mira variables and Red Clump stars and the recent developments in their
application as distance indicators.Comment: Review article, 63 pages (28 figures), Accepted for publication in
Space Science Reviews (Chapter 3 of a special collection resulting from the
May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space
Age
- âŠ