57,993 research outputs found

    Changes in Aphid Host Plant Diet Influence the Small-RNA Expression Profiles of Its Obligate Nutritional Symbiont, Buchnera.

    Get PDF
    Plants are a difficult food resource to use, and herbivorous insects have evolved a variety of mechanisms that allow them to fully exploit this poor nutritional resource. One such mechanism is the maintenance of bacterial symbionts that aid in host plant feeding and development. The majority of these intracellular symbionts have highly eroded genomes that lack many key regulatory genes; consequently, it is unclear if these symbionts can respond to changes in the insect's diet to facilitate host plant use. There is emerging evidence that symbionts with highly eroded genomes express small RNAs (sRNAs), some of which potentially regulate gene expression. In this study, we sought to determine if the reduced genome of the nutritional symbiont (Buchnera) in the pea aphid responds to changes in the aphid's host plant diet. Using transcriptome sequencing (RNA-seq), Buchnera sRNA expression profiles were characterized within two Buchnera life stages when pea aphids fed on either alfalfa or fava bean. Overall, this study demonstrates that Buchnera sRNA expression changes not only with life stage but also with changes in aphid host plant diet. Of the 321 sRNAs characterized in this study, 47% were previously identified and 22% showed evidence of conservation in two or more Buchnera taxa. Functionally, 13 differentially expressed sRNAs were predicted to target genes related to pathways involved in essential amino acid biosynthesis. Overall, results from this study reveal that host plant diet influences the expression of conserved and lineage-specific sRNAs in Buchnera and that these sRNAs display distinct host plant-specific expression profiles among biological replicates.IMPORTANCE In general, the genomes of intracellular bacterial symbionts are reduced compared to those of free-living relatives and lack many key regulatory genes. Many of these reduced genomes belong to obligate mutualists of insects that feed on a diet that is deficient in essential nutrients, such as essential amino acids. It is unclear if these symbionts respond with their host to changes in insect diet, because of their reduced regulatory capacity. Emerging evidence suggests that these symbionts express small RNAs (sRNAs) that regulate gene expression at the posttranscriptional level. Therefore, in this study, we sought to determine if the reduced genome of the nutritional symbiont Buchnera in the pea aphid responds to changes in the aphid's host plant diet. This study demonstrates for the first time that Buchnera sRNAs, some conserved in two or more Buchnera lineages, are differentially expressed when aphids feed on different plant species and potentially target genes within essential amino acid biosynthesis pathways

    Nearly-logarithmic decay in the colloidal hard-sphere system

    Full text link
    Nearly-logarithmic decay is identified in the data for the mean-squared displacement of the colloidal hard-sphere system at the liquid-glass transition [v. Megen et. al, Phys. Rev. E 58, 6073(1998)]. The solutions of mode-coupling theory for the microscopic equations of motion fit the experimental data well. Based on these equations, the nearly-logarithmic decay is explained as the equivalent of a beta-peak phenomenon, a manifestation of the critical relaxation when the coupling between of the probe variable and the density fluctuations is strong. In an asymptotic expansion, a Cole-Cole formula including corrections is derived from the microscopic equations of motion, which describes the experimental data for three decades in time.Comment: 4 pages, 3 figure

    Null boundary controllability of a 1-dimensional heat equation with an internal point mass

    Full text link
    We consider a linear hybrid system composed by two rods of equal length connected by a point mass. We show that the system is null controllable with Dirichlet and Neumann controls. The results are based on a careful spectral spectral analysis together with the moment method.Comment: 12 pages, typos corrected, added references, matches version to be submitted to Systems and Control Letter

    Thermal anomalies in membrane properties

    Get PDF
    Anomalities in water and aqueous systems, and temperature effects on membrane

    Relaxation in a glassy binary mixture: Mode-coupling-like power laws, dynamic heterogeneity and a new non-Gaussian parameter

    Full text link
    We examine the relaxation of the Kob-Andersen Lennard-Jones binary mixture using Brownian dynamics computer simulations. We find that in accordance with mode-coupling theory the self-diffusion coefficient and the relaxation time show power-law dependence on temperature. However, different mode-coupling temperatures and power laws can be obtained from the simulation data depending on the range of temperatures chosen for the power-law fits. The temperature that is commonly reported as this system's mode-coupling transition temperature, in addition to being obtained from a power law fit, is a crossover temperature at which there is a change in the dynamics from the high temperature homogeneous, diffusive relaxation to a heterogeneous, hopping-like motion. The hopping-like motion is evident in the probability distributions of the logarithm of single-particle displacements: approaching the commonly reported mode-coupling temperature these distributions start exhibiting two peaks. Notably, the temperature at which the hopping-like motion appears for the smaller particles is slightly higher than that at which the hopping-like motion appears for the larger ones. We define and calculate a new non-Gaussian parameter whose maximum occurs approximately at the time at which the two peaks in the probability distribution of the logarithm of displacements are most evident.Comment: Submitted for publication in Phys. Rev.

    Attack of \u3ci\u3eUrophora Quadrifasciata\u3c/i\u3e (Meig.) (Diiptera: Tephritidae) A Biological Control Agent for Spotted Knapweed (\u3ci\u3eCentaurea Maculosa\u3c/i\u3e Lamarck) and Diffuse Knapweed (\u3ci\u3eC. Diffusa\u3c/i\u3e Lamarck) (Asteraceae) by a Parasitoid, \u3ci\u3ePteromalus\u3c/i\u3e Sp. (Hymenoptera: Pteromalidae) in Michigan

    Get PDF
    Urophora quadrifasciata (Meig.) a seedhead fly released in North America for biological control of Centaurea maculosa and C. diffusa is parasitized by a Pteromalus sp. Parasitism up to 60% of U. quadrifasciata was found in samples of seed heads of C. maculosa and C. diffusa collected from 54 of the 59 counties sampled in Michigan and in one sample of C. maculosa seed heads from Hennepin County, Minnesota. Parasitism of U. quadrifasciata has rarely been reported

    Multi-scale coarse-graining of diblock copolymer self-assembly: from monomers to ordered micelles

    Full text link
    Starting from a microscopic lattice model, we investigate clustering, micellization and micelle ordering in semi-dilute solutions of AB diblock copolymers in a selective solvent. To bridge the gap in length scales, from monomers to ordered micellar structures, we implement a two-step coarse graining strategy, whereby the AB copolymers are mapped onto ``ultrasoft'' dumbells with monomer-averaged effective interactions between the centres of mass of the blocks. Monte Carlo simulations of this coarse-grained model yield clear-cut evidence for self-assembly into micelles with a mean aggregation number n of roughly 100 beyond a critical concentration. At a slightly higher concentration the micelles spontaneously undergo a disorder-order transition to a cubic phase. We determine the effective potential between these micelles from first principles.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Lett

    Dynamical transition of glasses: from exact to approximate

    Full text link
    We introduce a family of glassy models having a parameter, playing the role of an interaction range, that may be varied continuously to go from a system of particles in d dimensions to a mean-field version of it. The mean-field limit is exactly described by equations conceptually close, but different from, the Mode-Coupling equations. We obtain these by a dynamic virial construction. Quite surprisingly we observe that in three dimensions, the mean-field behavior is closely followed for ranges as small as one interparticle distance, and still qualitatively for smaller distances. For the original particle model, we expect the present mean-field theory to become, unlike the Mode-Coupling equations, an increasingly good approximation at higher dimensions.Comment: 44 pages, 19 figure

    Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD) Volume 7: IPAD benefits and impact

    Get PDF
    The potential benefits, impact and spinoff of IPAD technology are described. The benefits are projected from a flowtime and labor cost analysis of the design process and a study of the flowtime and labor cost savings being experienced with existing integrated systems. Benefits in terms of designer productivity, company effectiveness, and IPAD as a national resource are developed. A description is given of the potential impact of information handling as an IPAD technology, upon task and organization structure and people who use IPAD. Spinoff of IPAD technology to nonaerospace industries is discussed. The results of a personal survey made of aerospace, nonaerospace, government and university sources are given
    • …
    corecore